Nothing
#### ### ##
# METHODS #
#### ### ##
#' SB.sPLS-DACOX-Dynamic
#' @description This function performs a single-block sparse partial least squares deviance residual
#' Cox (SB.sPLS-DACOX-Dynamic). The function returns a Coxmos model with the attribute model as "SB.sPLS-DACOX-Dynamic".
#'
#' @details
#' The `SB.sPLS-DACOX-Dynamic` function performs a single-block sparse partial least squares deviance residual
#' Cox analysis. This method is designed to handle datasets with a single block of explanatory variables
#' and aims to identify the most relevant features that contribute to the survival outcome. The method
#' combines the strengths of sparse partial least squares (sPLS) with Cox regression, allowing for
#' dimensionality reduction, feature selection, and survival analysis in a unified framework.
#'
#' The key feature of this function is the use of deviance residuals as the response in the sPLS model.
#' Deviance residuals are derived from a preliminary Cox model and capture the discrepancies between
#' the observed and expected number of events. By using these residuals as the response, the sPLS model
#' can focus on identifying the explanatory variables that have the most significant impact on the
#' survival outcome.
#'
#' The function offers flexibility in specifying various hyperparameters, such as the number of latent
#' components (`n.comp`) and the penalty for variable selection (`penalty`). The penalty parameter, `penalty`,
#' controls the sparsity of the model, with higher values leading to more variables being excluded from
#' the model. This allows for a balance between model complexity and interpretability.
#'
#' Data preprocessing options, such as centering and scaling of the explanatory variables and removal
#' of near-zero variance variables, are also provided. These preprocessing steps ensure that the data
#' is in a suitable format for the sPLS model and can help improve the stability and performance of
#' the analysis.
#'
#' The output of the function provides a comprehensive overview of the sPLS-DACOX model, including the
#' normalized data, PLS weights and scores, and the final Cox model. Visualization tools and metrics
#' such as AIC and BIC are also provided to aid in understanding the model's performance and
#' significance of the selected features.
#'
#' In summary, the `SB.sPLS-DACOX-Dynamic` function offers a robust approach for survival analysis with
#' high-dimensional data, combining feature selection, dimensionality reduction, and Cox regression
#' in a single-block framework. The method is particularly useful for datasets where the number of
#' variables exceeds the number of observations, and there's a need to identify the most relevant
#' features for predicting survival outcomes.
#'
#' @param X List of numeric matrices or data.frames. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param n.comp Numeric. Number of latent components to compute for the (s)PLS model (default: 10).
#' @param vector Numeric vector. Used for computing best number of variables. As many values as
#' components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL).
#' @param MIN_NVAR Numeric. Minimum range size for computing cut points to select the best number of
#' variables to use (default: 10).
#' @param MAX_NVAR Numeric. Maximum range size for computing cut points to select the best number of
#' variables to use (default: 1000).
#' @param n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
#' If only two cut points are selected, minimum and maximum size are used. For MB approaches as many
#' as n.cut_points^n.blocks models will be computed as minimum (default: 5).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param EVAL_METHOD Character. The selected metric will be use to compute the best
#' number of variables. Must be one of the following: "AUC", "IBS" or "C.Index" (default: "AUC").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#'
#' @return Instance of class "Coxmos" and model "sb.splscox". The class contains the following
#' elements:
#' \code{X}: List of normalized X data information.
#' \itemize{
#' \item \code{(data)}: normalized X matrix
#' \item \code{(weightings)}: PLS weights
#' \item \code{(weightings_norm)}: PLS normalize weights
#' \item \code{(W.star)}: PLS W* vector
#' \item \code{(scores)}: PLS scores/variates
#' \item \code{(x.mean)}: mean values for X matrix
#' \item \code{(x.sd)}: standard deviation for X matrix
#' }
#' \code{Y}: List of normalized Y data information.
#' \itemize{
#' \item \code{(deviance_residuals)}: deviance residual vector used as Y matrix in the sPLS.
#' \item \code{(dr.mean)}: mean values for deviance residuals Y matrix
#' \item \code{(dr.sd)}: standard deviation for deviance residuals Y matrix'
#' \item \code{(data)}: normalized X matrix
#' \item \code{(y.mean)}: mean values for Y matrix
#' \item \code{(y.sd)}: standard deviation for Y matrix'
#' }
#' \code{survival_model}: List of survival model information.
#' \itemize{
#' \item \code{fit}: coxph object.
#' \item \code{AIC}: AIC of cox model.
#' \item \code{BIC}: BIC of cox model.
#' \item \code{lp}: linear predictors for train data.
#' \item \code{coef}: Coefficients for cox model.
#' \item \code{YChapeau}: Y Chapeau residuals.
#' \item \code{Yresidus}: Y residuals.
#' }
#'
#' \code{list_spls_models}: List of sPLS-DACOX models computed for each block.
#'
#' \code{n.comp}: Number of components selected.
#'
#' \code{penalty} Penalty applied.
#'
#' \code{call}: call function
#'
#' \code{X_input}: X input matrix
#'
#' \code{Y_input}: Y input matrix
#'
#' \code{nzv}: Variables removed by remove_near_zero_variance or remove_zero_variance.
#'
#' \code{nz_coeffvar}: Variables removed by coefficient variation near zero.
#'
#' \code{class}: Model class.
#'
#' \code{time}: time consumed for running the cox analysis.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' data("X_multiomic")
#' data("Y_multiomic")
#' X <- X_multiomic
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_multiomic$event, p = .25, list = FALSE, times = 1)
#' X_train <- X_multiomic
#' X_train$mirna <- X_train$mirna[index_train,1:30]
#' X_train$proteomic <- X_train$proteomic[index_train,1:30]
#' Y_train <- Y_multiomic[index_train,]
#' Y <- Y_multiomic
#' vector <- list()
#' vector$mirna <- c(10, 20)
#' vector$proteomic <- c(10, 20)
#' sb.splsdacox(X_train, Y_train, n.comp = 2, vector = vector, x.center = TRUE, x.scale = TRUE)
sb.splsdacox <- function(X, Y,
n.comp = 4, vector = NULL,
MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 5,
MIN_AUC_INCREASE = 0.01,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
remove_non_significant = FALSE, alpha = 0.05,
EVAL_METHOD = "AUC", pred.method = "cenROC", max.iter = 200,
times = NULL, max_time_points = 15,
MIN_EPV = 5, returnData = TRUE, verbose = FALSE){
# tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
tol = 1e-10
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### Check values classes and ranges
params_with_limits <- list("alpha" = alpha, "MIN_AUC_INCREASE" = MIN_AUC_INCREASE)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("n.comp" = n.comp, "MIN_NVAR" = MIN_NVAR, "n.cut_points" = n.cut_points,
"max_time_points" = max_time_points,
"MIN_EPV" = MIN_EPV, "tol" = tol, "max.iter" = max.iter)
if(!is.null(MAX_NVAR)){
numeric_params$MAX_NVAR <- MAX_NVAR
}
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = unlist(x.center), "x.scale" = unlist(x.scale),
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_non_significant" = remove_non_significant, "returnData" = returnData, "verbose" = verbose)
check_class(logical_params, class = "logical")
character_params <- list("EVAL_METHOD" = EVAL_METHOD, "pred.method" = pred.method)
check_class(character_params, class = "character")
#### Check rownames
lst_check <- checkXY.rownames.mb(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Check colnames
X <- checkColnamesIllegalChars.mb(X)
#### REQUIREMENTS
checkX.colnames.mb(X)
checkY.colnames(Y)
lst_check <- checkXY.mb.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Original data
X_original <- X
Y_original <- Y
time <- Y[,"time"]
event <- Y[,"event"]
#### ZERO VARIANCE - ALWAYS
lst_dnz <- deleteZeroOrNearZeroVariance.mb(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
#### COEF VARIATION
lst_dnzc <- deleteNearZeroCoefficientOfVariation.mb(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
#### SCALING
lst_scale <- XY.mb.scale(X, Y, x.center, x.scale, y.center, y.scale)
Xh <- lst_scale$Xh
Yh <- lst_scale$Yh
xmeans <- lst_scale$xmeans
xsds <- lst_scale$xsds
ymeans <- lst_scale$ymeans
ysds <- lst_scale$ysds
X_norm <- Xh
#### MAX PREDICTORS
n.comp <- check.mb.maxPredictors(X, Y, MIN_EPV, n.comp, verbose = verbose)
# CREATE INDIVIDUAL MODELS
lst_sb.spls <- list()
for(b in names(Xh)){
# vector as list in SB
aux_vector <- NULL
if(b %in% names(vector)){
aux_vector <- vector[[b]]
}else{
aux_vector <- vector
}
lst_sb.spls[[b]] <- splsdacox(X = Xh[[b]], Y = Yh, n.comp = n.comp, vector = aux_vector,
MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, n.cut_points = n.cut_points,
MIN_AUC_INCREASE = MIN_AUC_INCREASE,
x.scale = FALSE, x.center = FALSE,
#y.scale = FALSE, y.center = FALSE,
remove_near_zero_variance = FALSE, remove_zero_variance = FALSE, toKeep.zv = toKeep.zv, #zero_var already checked
remove_non_significant = remove_non_significant, alpha = alpha,
EVAL_METHOD = EVAL_METHOD, pred.method = pred.method, max.iter = max.iter,
times = times, max_time_points = max_time_points,
MIN_EPV = MIN_EPV,
returnData = FALSE, verbose = verbose)
}
# CHECK ALL MODELS SAME COMPONENTS
aux_ncomp <- purrr::map(lst_sb.spls, ~.$n.comp)
aux_n.varX <- purrr::map(lst_sb.spls, ~.$n.varX)
names(aux_n.varX) <- names(Xh)
# CREATE COMBINE MODEL
data <- NULL
cn.merge <- NULL
for(b in names(Xh)){
if(!is.null(lst_sb.spls[[b]]$survival_model)){
data <- cbind(data, lst_sb.spls[[b]]$X$scores)
cn.merge <- c(cn.merge, paste0(colnames(lst_sb.spls[[b]]$X$scores), "_", b))
}else{
next
}
}
#colnames(data) <- apply(expand.grid(colnames(lst_sb.spls[[1]]$X$scores), names(Xh)), 1, paste, collapse="_")
colnames(data) <- cn.merge
cox_model <- cox(X = data, Y = Yh,
x.center = FALSE, x.scale = FALSE,
#y.center = FALSE, y.scale = FALSE,
remove_near_zero_variance = FALSE, remove_zero_variance = FALSE,
remove_non_significant = remove_non_significant, FORCE = TRUE)
# RETURN a MODEL with ALL significant Variables from complete, deleting one by one
removed_variables <- NULL
removed_variables_cor <- NULL
# REMOVE NA-PVAL VARIABLES
# p_val could be NA for some variables (if NA change to P-VAL=1)
# DO IT ALWAYS, we do not want problems in COX models
if(all(c("time", "event") %in% colnames(data))){
lst_model <- removeNAorINFcoxmodel(model = cox_model$survival_model$fit, data = data, time.value = NULL, event.value = NULL)
}else{
lst_model <- removeNAorINFcoxmodel(model = cox_model$survival_model$fit, data = cbind(data, Yh), time.value = NULL, event.value = NULL)
}
cox_model$survival_model$fit <- lst_model$model
removed_variables_cor <- c(removed_variables_cor, lst_model$removed_variables)
# RETURN a MODEL with ALL significant Variables from complete, deleting one by one in backward method
# already performed in cox() function
if(remove_non_significant){
removed_variables <- cox_model$nsv
}else{
removed_variables <- NULL
}
#### ### #
# RETURN #
#### ### #
func_call <- match.call()
if(isa(cox_model$survival_model$fit,"coxph")){
survival_model <- getInfoCoxModel(cox_model$survival_model$fit)
}else{
survival_model <- NULL
}
if(!returnData){
survival_model <- removeInfoSurvivalModel(cox_model$survival_model)
}else{
survival_model <- cox_model$survival_model
}
all_scores <- NULL
for(b in names(lst_sb.spls)){
aux_scores <- lst_sb.spls[[b]]$X$scores
colnames(aux_scores) <- paste0(colnames(aux_scores), "_", b)
all_scores <- cbind(all_scores, aux_scores)
}
# all_loadings <- list()
# for(b in names(lst_sb.spls)){
# all_loadings[[b]] <- lst_sb.spls[[b]]$X$loadings
# }
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
return(sb.splsdacox_dynamic_class(list(X = list("data" = if(returnData) X_norm else NA,
# "loadings" = all_loadings,
"scores" = all_scores,
"x.mean" = xmeans,
"x.sd" = xsds),
Y = list("data" = Yh,
"y.mean" = ymeans,
"y.sd" = ysds),
survival_model = survival_model,
list_spls_models = lst_sb.spls,
n.comp = n.comp, #number of components used, but could be lesser than expected because not computed models
n.varX = aux_n.varX,
call = if(returnData) func_call else NA,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
alpha = alpha,
nsv = removed_variables,
nzv = variablesDeleted,
nz_coeffvar = variablesDeleted_cvar,
class = pkg.env$sb.splsdacox_dynamic,
time = time)))
}
#### ### ### ### ###
# CROSS-EVALUATION #
#### ### ### ### ###
#' SB.sPLS-DACOX-Dynamic Cross-Validation
#' @description This function performs cross-validated sparse partial least squares single block for splsdacox.
#' The function returns the optimal number of components and the optimal sparsity penalty value based
#' on cross-validation. The performance could be based on multiple metrics as Area Under the Curve
#' (AUC), I. Brier Score or C-Index. Furthermore, the user could establish more than one metric
#' simultaneously.
#'
#' @details
#' The `cv.sb.splsdacox_dynamic` function performs cross-validation for the single-block sparse partial least
#' squares deviance residual Cox analysis. Cross-validation is a robust method to evaluate the
#' performance of a statistical model by partitioning the original sample into a training set to train
#' the model, and a test set to evaluate it. This helps in selecting the optimal hyperparameters for
#' the model, such as the number of latent components (`max.ncomp`) and the penalty for variable
#' selection (`penalty.list`).
#'
#' The function systematically evaluates different combinations of hyperparameters by performing
#' multiple runs and folds. For each combination, the dataset is divided into training and test sets
#' based on the specified number of folds (`k_folds`). The model is then trained on the training set
#' and evaluated on the test set. This process is repeated for the specified number of runs (`n_run`),
#' ensuring a comprehensive evaluation of the model's performance across different partitions of the
#' data.
#'
#' Various evaluation metrics, such as AIC, C-Index, I. Brier Score, and AUC, are computed for each
#' combination of hyperparameters. These metrics provide insights into the model's accuracy,
#' discriminative ability, and calibration. The function then identifies the optimal hyperparameters
#' that yield the best performance based on the specified evaluation metrics.
#'
#' The function also offers flexibility in data preprocessing, such as centering and scaling of the
#' explanatory variables, removal of near-zero variance variables, and more. Additionally, users can
#' specify the AUC evaluation algorithm method (`pred.method`) and control the verbosity of the
#' output (`verbose`).
#'
#' The output provides a comprehensive overview of the cross-validation results, including detailed
#' information at the fold, run, and component levels. Visualization tools, such as plots for AIC,
#' C-Index, I. Brier Score, and AUC, are also provided to aid in understanding the model's performance
#' across different hyperparameters.
#'
#' In summary, the `cv.sb.splsdacox_dynamic` function offers a robust approach for hyperparameter tuning and
#' model evaluation for the single-block sparse partial least squares deviance residual Cox analysis.
#' It ensures that the final model is both accurate and generalizable to new data.
#'
#' @param X List of numeric matrices or data.frames. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param max.ncomp Numeric. Maximum number of PLS components to compute for the cross validation
#' (default: 8).
#' @param vector Numeric vector. Used for computing best number of variables. As many values as
#' components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL).
#' @param MIN_NVAR Numeric. Minimum range size for computing cut points to select the best number of
#' variables to use (default: 10).
#' @param MAX_NVAR Numeric. Maximum range size for computing cut points to select the best number of
#' variables to use (default: 1000).
#' @param n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
#' If only two cut points are selected, minimum and maximum size are used. For MB approaches as many
#' as n.cut_points^n.blocks models will be computed as minimum (default: 5).
#' @param n_run Numeric. Number of runs for cross validation (default: 3).
#' @param k_folds Numeric. Number of folds for cross validation (default: 10).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_variance_at_fold_level Logical. If remove_variance_at_fold_level = TRUE, (near) zero
#' variance will be removed at fold level. Not recommended. (default: FALSE).
#' @param remove_non_significant_models Logical. If remove_non_significant_models = TRUE,
#' non-significant models are removed before computing the evaluation. A non-significant model is a
#' model with at least one component/variable with a P-Value higher than the alpha cutoff.
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops (default: 0.01).
#' @param EVAL_METHOD Character. The selected metric will be use to compute the best
#' number of variables. Must be one of the following: "AUC", "IBS" or "C.Index" (default: "AUC").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
#' @param w_C.Index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
#' @param w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
#' @param w_I.BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (default: 0).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the minimum is
#' reached, the evaluation could stop if the improvement does not reach an AUC higher than adding the
#' 'MIN_AUC_INCREASE' value (default: 0.8).
#' @param MIN_COMP_TO_CHECK Numeric. Number of penalties/components to evaluate to check if the AUC
#' improves. If for the next 'MIN_COMP_TO_CHECK' the AUC is not better and the 'MIN_AUC' is meet, the
#' evaluation could stop (default: 3).
#' @param pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
#' "mean" or "median" (default: "mean").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simultaneously.
#' If fast_mode = FALSE, for each run, all linear predictors are computed for test observations. Once
#' all have their linear predictors, the evaluation is perform across all the observations together
#' (default: FALSE).
#' @param max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param return_models Logical. Return all models computed in cross validation (default: FALSE).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
#' total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#' @param seed Number. Seed value for performing runs/folds divisions (default: 123).
#'
#' @return Instance of class "Coxmos" and model "cv.SB.sPLS-DACOX-Dynamic".
#' \code{best_model_info}: A data.frame with the information for the best model.
#' \code{df_results_folds}: A data.frame with fold-level information.
#' \code{df_results_runs}: A data.frame with run-level information.
#' \code{df_results_comps}: A data.frame with component-level information (for cv.coxEN, EN.alpha
#' information).
#'
#' \code{lst_models}: If return_models = TRUE, return a the list of all cross-validated models.
#' \code{pred.method}: AUC evaluation algorithm method for evaluate the model performance.
#'
#' \code{opt.comp}: Optimal component selected by the best_model.
#' \code{opt.nvar}: Optimal penalty/penalty selected by the best_model.
#' \code{opt.nvar}: Optimal number of variables selected by the best_model.
#'
#' \code{plot_AIC}: AIC plot by each hyper-parameter.
#' \code{plot_C.Index}: C-Index plot by each hyper-parameter.
#' \code{plot_I.BRIER}: Integrative Brier Score plot by each hyper-parameter.
#' \code{plot_AUC}: AUC plot by each hyper-parameter.
#'
#' \code{class}: Cross-Validated model class.
#'
#' \code{lst_train_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for train the models.
#' \code{lst_test_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for test the models.
#'
#' \code{time}: time consumed for running the cross-validated function.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' data("X_multiomic")
#' data("Y_multiomic")
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_multiomic$event, p = .25, list = FALSE, times = 1)
#' X_train <- X_multiomic
#' X_train$mirna <- X_train$mirna[index_train,1:20]
#' X_train$proteomic <- X_train$proteomic[index_train,1:20]
#' Y_train <- Y_multiomic[index_train,]
#' vector <- list()
#' vector$mirna <- c(10, 20)
#' vector$proteomic <- c(10, 20)
#' cv.sb.splsdacox_dynamic_model <- cv.sb.splsdacox(X_train, Y_train, max.ncomp = 1,
#' vector = vector, n_run = 1, k_folds = 3, x.center = TRUE, x.scale = TRUE)
cv.sb.splsdacox <- function(X, Y,
max.ncomp = 8, vector = NULL,
MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 5,
MIN_AUC_INCREASE = 0.01,
EVAL_METHOD = "AUC",
n_run = 3, k_folds = 10,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE, remove_non_significant = FALSE, alpha = 0.05,
w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL,
max_time_points = 15,
MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3,
pred.attr = "mean", pred.method = "cenROC", fast_mode = FALSE,
max.iter = 200,
MIN_EPV = 5, return_models = FALSE, returnData = FALSE,
PARALLEL = FALSE, verbose = FALSE, seed = 123){
# tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
tol = 1e-10
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### ### ###
# WARNINGS #
#### ### ###
#### Check evaluator installed:
checkLibraryEvaluator(pred.method)
#### Check values classes and ranges
params_with_limits <- list("MIN_AUC_INCREASE" = MIN_AUC_INCREASE, "MIN_AUC" = MIN_AUC, "alpha" = alpha,
"w_AIC" = w_AIC, "w_C.Index" = w_C.Index, "w_AUC" = w_AUC, "w_I.BRIER" = w_I.BRIER)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("max.ncomp" = max.ncomp, "MIN_NVAR" = MIN_NVAR, "n.cut_points" = n.cut_points,
"n_run" = n_run, "k_folds" = k_folds, "max_time_points" = max_time_points,
"MIN_COMP_TO_CHECK" = MIN_COMP_TO_CHECK, "MIN_EPV" = MIN_EPV, "seed" = seed, "tol" = tol)
if(!is.null(MAX_NVAR)){
numeric_params$MAX_NVAR <- MAX_NVAR
}
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = unlist(x.center), "x.scale" = unlist(x.scale),
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_variance_at_fold_level" = remove_variance_at_fold_level,
"remove_non_significant_models" = remove_non_significant_models,
"remove_non_significant" = remove_non_significant,
"return_models" = return_models,"returnData" = returnData, "verbose" = verbose, "PARALLEL" = PARALLEL)
check_class(logical_params, class = "logical")
character_params <- list("EVAL_METHOD" = EVAL_METHOD, "pred.attr" = pred.attr, "pred.method" = pred.method)
check_class(character_params, class = "character")
#### Check cv-folds
lst_checkFR <- checkFoldRuns(Y, n_run, k_folds, fast_mode)
n_run <- lst_checkFR$n_run
fast_mode <- lst_checkFR$fast_mode
#### Check rownames
lst_check <- checkXY.rownames.mb(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Check colnames
X <- checkColnamesIllegalChars.mb(X)
#### REQUIREMENTS
checkX.colnames.mb(X)
checkY.colnames(Y)
lst_check <- checkXY.mb.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
check.cv.weights(c(w_AIC, w_C.Index, w_I.BRIER, w_AUC))
# if(!pred.method %in% c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I")){
# stop_quietly(paste0("pred.method must be one of the following: ", paste0(c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I"), collapse = ", ")))
# }
if(!pred.method %in% pkg.env$AUC_evaluators){
stop_quietly(paste0("pred.method must be one of the following: ", paste0(pkg.env$AUC_evaluators, collapse = ", ")))
}
#### ZERO VARIANCE
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnz <- deleteZeroOrNearZeroVariance.mb(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
}else{
variablesDeleted <- NULL
}
#### COEF VARIATION
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnzc <- deleteNearZeroCoefficientOfVariation.mb(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
}else{
variablesDeleted_cvar <- NULL
}
#### MAX PREDICTORS
max.ncomp <- check.mb.ncomp(X, max.ncomp)
max.ncomp <- check.mb.maxPredictors(X, Y, MIN_EPV, max.ncomp, verbose = verbose)
if(MIN_COMP_TO_CHECK >= max.ncomp){
MIN_COMP_TO_CHECK = max(max.ncomp-1, 1)
}
#### #
# CV #
#### #
# lst_data <- splitData_Iterations_Folds.mb(X, Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
# lst_X_train <- lst_data$lst_X_train
# lst_Y_train <- lst_data$lst_Y_train
# lst_X_test <- lst_data$lst_X_test
# lst_Y_test <- lst_data$lst_Y_test
# k_folds <- lst_data$k_folds
#
# lst_train_indexes <- lst_data$lst_train_index
# lst_test_indexes <- lst_data$lst_test_index
lst_data <- splitData_Iterations_Folds_indexes(Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
lst_train_indexes <- lst_data$lst_train_index
lst_test_indexes <- lst_data$lst_test_index
#### ### ### ###
# TRAIN MODELS #
#### ### ### ###
total_models <- max.ncomp * k_folds * n_run
lst_model <- get_Coxmos_models2.0(method = pkg.env$sb.splsdacox_dynamic,
X_train = X, Y_train = Y,
lst_X_train = lst_train_indexes, lst_Y_train = lst_train_indexes,
max.ncomp = max.ncomp, penalty.list = NULL, EN.alpha.list = NULL, max.variables = NULL, vector = vector,
n_run = n_run, k_folds = k_folds,
MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, MIN_AUC_INCREASE = MIN_AUC_INCREASE, EVAL_METHOD = EVAL_METHOD,
n.cut_points = n.cut_points,
x.center = x.center, x.scale = x.scale,
y.center = y.center, y.scale = y.scale,
remove_near_zero_variance = remove_variance_at_fold_level, remove_zero_variance = FALSE, toKeep.zv = NULL,
alpha = alpha, MIN_EPV = MIN_EPV,
remove_non_significant = remove_non_significant, tol = tol,
max.iter = max.iter, times = times, pred.method = pred.method, max_time_points = max_time_points,
returnData = returnData, total_models = total_models,
PARALLEL = PARALLEL, verbose = verbose)
#### ### ### ### ### ### #
# BEST MODEL FOR CV DATA #
#### ### ### ### ### ### #
total_models <- max.ncomp * k_folds * n_run
df_results_evals <- get_COX_evaluation_AIC_CINDEX(comp_model_lst = lst_model, alpha = alpha,
max.ncomp = max.ncomp, penalty.list = NULL, n_run = n_run, k_folds = k_folds,
total_models = total_models, remove_non_significant_models = remove_non_significant_models, verbose = verbose)
if(all(is.null(df_results_evals))){
message(paste0("Best model could NOT be obtained. All models computed present problems."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
if(return_models){
return(cv.sb.splsdacox_dynamic_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = lst_model, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.sb.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.sb.splsdacox_dynamic_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.sb.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
#### ### ### ### ### ### #
# EVALUATING BRIER SCORE #
#### ### ### ### ### ### #
df_results_evals_comp <- NULL
df_results_evals_run <- NULL
df_results_evals_fold <- NULL
optimal_comp_index <- NULL
optimal_comp_flag <- FALSE
optimal_eta_index <- NULL
optimal_eta <- NULL
if(TRUE){ #compute always BRIER SCORE
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
#As we are measuring just one evaluator and one method - PARALLEL = FALSE
lst_df <- get_COX_evaluation_BRIER(comp_model_lst = lst_model,
fast_mode = fast_mode,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = max.ncomp, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_I.BRIER = w_I.BRIER, method.train = pkg.env$sb.splsdacox_dynamic, PARALLEL = FALSE, verbose = verbose)
df_results_evals_comp <- lst_df$df_results_evals_comp
df_results_evals_run <- lst_df$df_results_evals_run
df_results_evals_fold <- lst_df$df_results_evals_fold
}
#### ### ### ### #
# EVALUATING AUC #
#### ### ### ### #
if(w_AUC!=0){
total_models <- ifelse(!fast_mode, n_run * max.ncomp, k_folds * n_run * max.ncomp)
#times should be the same for all folds
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
lst_df <- get_COX_evaluation_AUC(comp_model_lst = lst_model,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
fast_mode = fast_mode, pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = max.ncomp, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_AUC = w_AUC, method.train = pkg.env$sb.splsdacox_dynamic, PARALLEL = FALSE, verbose = verbose)
if(is.null(df_results_evals_comp)){
df_results_evals_comp <- lst_df$df_results_evals_comp
}else{
df_results_evals_comp$AUC <- lst_df$df_results_evals_comp$AUC
}
if(is.null(df_results_evals_run)){
df_results_evals_run <- lst_df$df_results_evals_run
}else{
df_results_evals_run$AUC <- lst_df$df_results_evals_run$AUC
}
if(is.null(df_results_evals_fold)){
df_results_evals_fold <- lst_df$df_results_evals_fold
}else{
df_results_evals_fold$AUC <- lst_df$df_results_evals_fold$AUC
}
optimal_comp_index <- lst_df$optimal_comp_index
optimal_comp_flag <- lst_df$optimal_comp_flag
optimal_eta <- lst_df$optimal_eta
optimal_eta_index <- lst_df$optimal_eta_index
}
#### ### ### #
# BEST MODEL #
#### ### ### #
df_results_evals_comp <- cv.getScoreFromWeight(df_results_evals_comp, w_AIC, w_C.Index, w_I.BRIER, w_AUC,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS")
if(optimal_comp_flag){
best_model_info <- df_results_evals_comp[df_results_evals_comp[,"n.comps"]==optimal_comp_index,, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}else{
best_model_info <- df_results_evals_comp[which(df_results_evals_comp[,"score"] == max(df_results_evals_comp[,"score"], na.rm = TRUE)),, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}
#### ###
# PLOT #
#### ###
class = pkg.env$sb.splsdacox_dynamic
lst_EVAL_PLOTS <- get_EVAL_PLOTS(fast_mode = fast_mode, best_model_info = best_model_info, w_AUC = w_AUC, w_I.BRIER = w_I.BRIER, max.ncomp = max.ncomp, penalty.list = NULL,
df_results_evals_fold = df_results_evals_fold, df_results_evals_run = df_results_evals_run, df_results_evals_comp = df_results_evals_comp,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS", x.text = "Component",
class = class)
ggp_AUC <- lst_EVAL_PLOTS$ggp_AUC
ggp_IBS <- lst_EVAL_PLOTS$ggp_IBS
ggp_C.Index <- lst_EVAL_PLOTS$ggp_C.Index
ggp_AIC <- lst_EVAL_PLOTS$ggp_AIC
df_results_evals_comp <- lst_EVAL_PLOTS$df_results_evals_comp
#### ### #
# RETURN #
#### ### #
best_model_info$n.var <- best_model_info$n.var #is a factor ('_' split blocks)
opt_n.var <- as.list(as.numeric(strsplit(as.character(best_model_info$n.var), "_")[[1]]))
names(opt_n.var) <- names(X)
message(paste0("Best model obtained.\n"))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
if(return_models){
return(cv.sb.splsdacox_dynamic_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = lst_model, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.nvar = opt_n.var, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.sb.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.sb.splsdacox_dynamic_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = NULL, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.nvar = opt_n.var, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.sb.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
### ## ##
# CLASS #
### ## ##
sb.splsdacox_dynamic_class = function(pls_model, ...) {
model = structure(pls_model, class = pkg.env$model_class,
model = pkg.env$sb.splsdacox_dynamic)
return(model)
}
cv.sb.splsdacox_dynamic_class = function(pls_model, ...) {
model = structure(pls_model, class = pkg.env$model_class,
model = pkg.env$cv.sb.splsdacox_dynamic)
return(model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.