R/Coxmos_splsdacox_dynamic.R

Defines functions cv.splsdacox_dynamic_class splsdacox_dynamic_class cv.splsdacox splsdacox

Documented in cv.splsdacox splsdacox

#### ### ##
# METHODS #
#### ### ##

#' sPLS-DACOX Dynamic
#' @description
#' The splsdacox_dynamic function conducts a sparse partial least squares discriminant analysis Cox
#' (sPLS-DACOX) using dynamic variable selection methodology. This method is particularly useful for
#' high-dimensional survival data where the goal is to identify a subset of variables that are most
#' predictive of survival outcomes. The function integrates the power of sPLSDA with the Cox
#' proportional hazards model to provide a robust tool for survival analysis in the context of large
#' datasets.
#'
#' @details
#' The function begins by checking the input parameters for consistency and ensuring that the response
#' variable Y has the required columns "time" and "event". It then preprocesses the data by centering
#' and scaling (if specified), and removing variables with zero or near-zero variance. The function
#' also checks for multicollinearity in the data and addresses it if detected.
#'
#' The core of the function involves determining the optimal number of variables to retain in the model.
#' If the vector parameter is not provided, the function employs a strategy to identify the best number
#' of variables for each latent component. This is achieved by evaluating different combinations of
#' variables and selecting the one that maximizes the model's performance, as determined by the
#' specified evaluation metric (EVAL_METHOD).
#'
#' Once the optimal number of variables is determined, the function proceeds to compute the sPLS-DACOX
#' model. It employs the mixOmics::splsda function to compute the sPLS-DA model, which is then
#' integrated with the Cox proportional hazards model. The resulting model provides insights into the
#' relationship between the predictor variables and survival outcomes.
#'
#' The function also offers the flexibility to refine the model further by removing non-significant
#' variables based on a specified alpha threshold.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param n.comp Numeric. Number of latent components to compute for the (s)PLS model (default: 10).
#' @param vector Numeric vector. Used for computing best number of variables. As many values as
#' components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL).
#' @param MIN_NVAR Numeric. Minimum range size for computing cut points to select the best number of
#' variables to use (default: 10).
#' @param MAX_NVAR Numeric. Maximum range size for computing cut points to select the best number of
#' variables to use (default: 1000).
#' @param n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
#' If only two cut points are selected, minimum and maximum size are used. For MB approaches as many
#' as n.cut_points^n.blocks models will be computed as minimum (default: 5).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param EVAL_METHOD Character. The selected metric will be use to compute the best
#' number of variables. Must be one of the following: "AUC", "IBS" or "C.Index" (default: "AUC").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#'
#' @return Instance of class "Coxmos" and model "sPLS-DACOX-Dynamic". The class contains the
#' following elements:
#' \code{X}: List of normalized X data information.
#' \itemize{
#'  \item \code{(data)}: normalized X matrix
#'  \item \code{(weightings)}: sPLS weights
#'  \item \code{(W.star)}: sPLS W* vector
#'  \item \code{(loadings)}: sPLS loadings
#'  \item \code{(scores)}: sPLS scores/variates
#'  \item \code{(x.mean)}: mean values for X matrix
#'  \item \code{(x.sd)}: standard deviation for X matrix
#'  }
#'
#' \code{Y}: List of normalized Y data information.
#' \itemize{
#'  \item \code{(data)}: normalized X matrix
#'  \item \code{(y.mean)}: mean values for Y matrix
#'  \item \code{(y.sd)}: standard deviation for Y matrix'
#'  }
#'
#' \code{survival_model}: List of survival model information.
#' \itemize{
#'  \item \code{fit}: coxph object.
#'  \item \code{AIC}: AIC of cox model.
#'  \item \code{BIC}: BIC of cox model.
#'  \item \code{lp}: linear predictors for train data.
#'  \item \code{coef}: Coefficients for cox model.
#'  \item \code{YChapeau}: Y Chapeau residuals.
#'  \item \code{Yresidus}: Y residuals.
#' }
#'
#' \code{n.comp}: Number of components selected.
#'
#' \code{n.varX}: Number of Variables selected in each PLS component.
#'
#' \code{var_by_component}: Variables selected in each PLS component.
#'
#' \code{plot_accuracyPerVariable}: If NULL vector is selected, return a plot for understanding the
#' number of variable selection.
#'
#' \code{call}: call function
#'
#' \code{X_input}: X input matrix
#'
#' \code{Y_input}: Y input matrix
#'
#' \code{alpha}: alpha value selected
#'
#' \code{nsv}: Variables removed by cox alpha cutoff.
#'
#' \code{nzv}: Variables removed by remove_near_zero_variance or remove_zero_variance.
#'
#' \code{nz_coeffvar}: Variables removed by coefficient variation near zero.
#'
#' \code{class}: Model class.
#'
#' \code{time}: time consumed for running the cox analysis.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @references
#' \insertRef{MixOmics}{Coxmos}
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' X <- X_proteomic[,1:20]
#' Y <- Y_proteomic
#' splsdacox(X, Y, n.comp = 2, vector = NULL, x.center = TRUE, x.scale = TRUE)

splsdacox <- function(X, Y,
                               n.comp = 4, vector = NULL,
                               MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 5,
                               MIN_AUC_INCREASE = 0.01,
                               x.center = TRUE, x.scale = FALSE,
                               remove_near_zero_variance = TRUE, remove_zero_variance = TRUE,
                               toKeep.zv = NULL,
                               remove_non_significant = FALSE, alpha = 0.05,
                               EVAL_METHOD = "AUC", pred.method = "cenROC", max.iter = 200,
                               times = NULL, max_time_points = 15,
                               MIN_EPV = 5, returnData = TRUE, verbose = FALSE){
  # tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
  tol = 1e-10

  t1 <- Sys.time()
  y.center = y.scale = FALSE
  FREQ_CUT <- 95/5

  #### Check values classes and ranges
  params_with_limits <- list("alpha" = alpha, "MIN_AUC_INCREASE" = MIN_AUC_INCREASE)
  check_min0_max1_variables(params_with_limits)

  numeric_params <- list("n.comp" = n.comp, "MIN_NVAR" = MIN_NVAR, "n.cut_points" = n.cut_points,
                  "max_time_points" = max_time_points,
                  "MIN_EPV" = MIN_EPV, "tol" = tol, "max.iter" = max.iter)

  if(!is.null(MAX_NVAR)){
    numeric_params$MAX_NVAR <- MAX_NVAR
  }

  check_class(numeric_params, class = "numeric")

  logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
                         #"y.center" = y.center, "y.scale" = y.scale,
                      "remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
                      "remove_non_significant" = remove_non_significant, "returnData" = returnData, "verbose" = verbose)
  check_class(logical_params, class = "logical")

  character_params <- list("EVAL_METHOD" = EVAL_METHOD, "pred.method" = pred.method)
  check_class(character_params, class = "character")

  #### Check rownames
  lst_check <- checkXY.rownames(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  #### Check colnames in X for Illegal Chars (affect cox formulas)
  X <- checkColnamesIllegalChars(X)

  #### REQUIREMENTS
  checkX.colnames(X)
  checkY.colnames(Y)
  lst_check <- checkXY.class(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  #### Original data
  X_original <- X
  Y_original <- Y

  time <- Y[,"time"]
  event <- Y[,"event"]

  #### ZERO VARIANCE - ALWAYS
  lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
                                          remove_near_zero_variance = remove_near_zero_variance,
                                          remove_zero_variance = remove_zero_variance,
                                          toKeep.zv = toKeep.zv,
                                          freqCut = FREQ_CUT)
  X <- lst_dnz$X
  variablesDeleted <- lst_dnz$variablesDeleted

  #### COEF VARIATION
  lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
  X <- lst_dnzc$X
  variablesDeleted_cvar <- lst_dnzc$variablesDeleted

  #### SCALING
  lst_scale <- XY.scale(X, Y, x.center, x.scale, y.center, y.scale)
  Xh <- lst_scale$Xh
  Yh <- lst_scale$Yh
  xmeans <- lst_scale$xmeans
  xsds <- lst_scale$xsds
  ymeans <- lst_scale$ymeans
  ysds <- lst_scale$ysds

  X_norm <- Xh

  #### MAX PREDICTORS
  MAX_NVAR <- min(MAX_NVAR, ncol(X))
  n.comp <- check.maxPredictors(X, Y, MIN_EPV, n.comp)

  #### ### ### ### ### ### ### ### ### ###
  # DIVIDE Y VENCERAS - BEST VECTOR SIZE #
  #### ### ### ### ### ### ### ### ### ###
  plotVAR <- NULL
  DR_coxph <- NULL

  if(is.null(vector)){
    lst_BV <- getBestVector(Xh, DR_coxph, Yh, n.comp, max.iter, vector, MIN_AUC_INCREASE, MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR,
                            cut_points = n.cut_points, EVAL_METHOD = EVAL_METHOD, EVAL_EVALUATOR = pred.method, PARALLEL = FALSE,
                            mode = "splsda", times = times, max_time_points = max_time_points, verbose = verbose)
    keepX <- lst_BV$best.keepX
    plotVAR <- plot_VAR_eval(lst_BV, EVAL_METHOD = EVAL_METHOD)
  }else{
    if(is.numeric(vector)){
      keepX <- vector
      if(length(keepX)>1){
        message("keepX must be a number, not a vector. Maximum value will be selected for compute the sPLS model.")
        keepX <- max(keepX)
      }

      if(keepX>ncol(X)){
        message("keepX must be a lesser than the number of columns in X. The value will be updated to that one.")
        keepX <- ncol(X)
      }
    }else{
      message("Vector does not has the proper structure. Optimizing best n.variables by using your vector as start vector.")
      lst_BV <- getBestVector(Xh, DR_coxph, Yh, n.comp, max.iter, vector = NULL, MIN_AUC_INCREASE, MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, cut_points = n.cut_points,
                             EVAL_METHOD = EVAL_METHOD, EVAL_EVALUATOR = pred.method, PARALLEL = FALSE, mode = "splsda", times = times, max_time_points = max_time_points, verbose = verbose)
      keepX <- lst_BV$best.keepX
      plotVAR <- plot_VAR_eval(lst_BV, EVAL_METHOD = EVAL_METHOD)
    }
  }

  #### ### ### ### ### ### ### ### ### ### ### ###
  ### ##             PLSDA-COX             ###  ##
  #### ### ### ### ### ### ### ### ### ### ### ###

  splsda <- mixOmics::splsda(Xh, Yh[,"event"], scale = FALSE, ncomp = n.comp, keepX = rep(keepX, n.comp), max.iter = max.iter, near.zero.var = TRUE)

  # PREDICTION
  # not implemented !!!
  # E, R2...

  #last model includes all of them
  tt_splsDR = data.matrix(splsda$variates$X)
  ww_splsDR = data.matrix(splsda$loadings$X)
  pp_splsDR = data.matrix(splsda$mat.c)

  colnames(tt_splsDR) <- paste0("comp_", 1:n.comp)

  #### ### ### ### ### ### ### ### ### ### ### #
  #                                            #
  #      Computation of the coefficients       #
  #      of the model with kk components       #
  #                                            #
  #### ### ### ### ### ### ### ### ### ### ### #

  #### ### ### ### ### ### ### ### ### ### ### #
  ##  ##              PLS-COX            ##  ##
  #### ### ### ### ### ### ### ### ### ### ### #
  n.comp_used <- ncol(tt_splsDR) #can be lesser than expected because we have lesser variables to select because penalization
  n.varX_used <- keepX

  d <- as.data.frame(cbind(tt_splsDR, Yh))
  cox_model <- NULL
  cox_model$fit <- tryCatch(
    # Specifying expression
    expr = {
      survival::coxph(formula = survival::Surv(time,event) ~ .,
                      data = d,
                      ties = "efron",
                      singular.ok = TRUE,
                      robust = TRUE,
                      nocenter = rep(1, ncol(d)),
                      model = TRUE, x = TRUE)
    },
    # Specifying error message
    error = function(e){
      message(paste0("splsdacox_dynamic: ", e))
      # invisible(gc())
      return(NA)
    }
  )

  if(all(is.na(cox_model$fit)) | all(is.null(cox_model$fit))){
    func_call <- match.call()

    t2 <- Sys.time()
    time <- difftime(t2,t1,units = "mins")

    survival_model <- NULL

    return(splsdacox_dynamic_class(list(X = list("data" = if(returnData) X_norm else NA,
                                                 "weightings" = W, #used for computed number of variables, bc mixomics do not put 0 in loadings
                                                 "W.star" = W.star,
                                                 "loadings" = P,
                                                 "scores" = Ts,
                                                 "x.mean" = xmeans, "x.sd" = xsds),
                                        Y = list("data" = Yh,
                                                 "y.mean" = ymeans, "y.sd" = ysds),
                                        survival_model = survival_model,
                                        n.comp = n.comp, #number of components
                                        n.varX = keepX,
                                        var_by_component = NULL,
                                        plot_accuracyPerVariable = plotVAR,
                                        call = if(returnData) func_call else NA,
                                        X_input = if(returnData) X_original else NA,
                                        Y_input = if(returnData) Y_original else NA,
                                        alpha = alpha,
                                        nsv = NULL,
                                        nzv = NULL,
                                        nz_coeffvar = NULL,
                                        class = pkg.env$splsdacox_dynamic,
                                        time = time)))
  }

  # RETURN a MODEL with ALL significant Variables from complete, deleting one by one
  removed_variables <- NULL
  removed_variables_cor <- NULL
  # REMOVE NA-PVAL VARIABLES
  # p_val could be NA for some variables (if NA change to P-VAL=1)
  # DO IT ALWAYS, we do not want problems in COX models

  if(all(c("time", "event") %in% colnames(d))){
    lst_model <- removeNAorINFcoxmodel(model = cox_model$fit, data = d, time.value = NULL, event.value = NULL)
  }else{
    lst_model <- removeNAorINFcoxmodel(model = cox_model$fit, data = cbind(d, Yh), time.value = NULL, event.value = NULL)
  }
  cox_model$fit <- lst_model$model
  removed_variables_cor <- c(removed_variables_cor, lst_model$removed_variables)

  #RETURN a MODEL with ALL significant Variables from complete, deleting one by one in backward method
  if(remove_non_significant){
    if(all(c("time", "event") %in% colnames(d))){
      lst_rnsc <- removeNonSignificativeCox(cox = cox_model$fit, alpha = alpha, cox_input = d, time.value = NULL, event.value = NULL)
    }else{
      lst_rnsc <- removeNonSignificativeCox(cox = cox_model$fit, alpha = alpha, cox_input = cbind(d, Yh), time.value = NULL, event.value = NULL)
    }

    cox_model$fit <- lst_rnsc$cox
    removed_variables <- lst_rnsc$removed_variables
  }

  survival_model = NULL
  if(!length(cox_model$fit) == 1){
    survival_model <- getInfoCoxModel(cox_model$fit)
  }

  #get W.star
  W <- ww_splsDR
  P <- pp_splsDR

  if(is.null(P) | is.null(W)){
    message(paste0(pkg.env$splsdacox_dynamic, " model cannot be computed because P or W vectors are NULL. Returning NA."))
    # invisible(gc())
    return(NA)
  }

  #W.star
  #sometimes solve(t(P) %*% W)
  #system is computationally singular: reciprocal condition number = 6.24697e-18
  # PW <- tryCatch(expr = {solve(t(P) %*% W, tol = tol)},
  #                error = function(e){
  #                  if(verbose){
  #                    message(e$message)
  #                  }
  #                  NA
  #                })

  PW <- tryCatch(expr = {MASS::ginv(t(P) %*% W)},
                 error = function(e){
                   if(verbose){
                     message(e$message)
                   }
                   NA
                 })

  if(all(is.na(PW))){
    message(paste0(pkg.env$splsdacox_dynamic, " model cannot be computed due to ginv(t(P) %*% W). Multicollineality could be present in your data. Returning NA."))
    # invisible(gc())
    return(NA)
  }

  # What happen when you cannot compute W.star but you have P and W?
  W.star <- W %*% PW

  Ts <- tt_splsDR

  rownames(Ts) <- rownames(X)
  #rownames(P) <- rownames(W) <-  rownames(W.star) <- colnames(X) #as some variables cannot be selected, that name does not work

  colnames(Ts) <- colnames(P) <- colnames(W) <-  colnames(W.star) <- paste0("comp_", 1:n.comp)

  # variable per component
  var_by_component = list()
  for(cn in colnames(W)){
    var_by_component[[cn]] <- rownames(W)[W[,cn]!=0]
  }

  #if we filter some components
  if(n.comp_used != length(names(cox_model$fit$coefficients))){
    if(verbose){
      message(paste0("Updating vectors. Final model select ", length(names(cox_model$fit$coefficients))," components instead of ", n.comp,"."))
    }
    #update all values
    which_to_keep <- which(colnames(W) %in% names(cox_model$fit$coefficients))

    W <- W[,names(cox_model$fit$coefficients),drop = FALSE]
    W.star = W.star[,names(cox_model$fit$coefficients),drop = FALSE]
    P = P[,names(cox_model$fit$coefficients),drop = FALSE]
    Ts = Ts[,names(cox_model$fit$coefficients),drop = FALSE]
    n.comp = ncol(max(which_to_keep))
  }

  func_call <- match.call()

  if(!returnData){
    survival_model <- removeInfoSurvivalModel(survival_model)
  }

  t2 <- Sys.time()
  time <- difftime(t2,t1,units = "mins")

  # invisible(gc())
  return(splsdacox_dynamic_class(list(X = list("data" = if(returnData) X_norm else NA,
                                               "weightings" = W, #used for computed number of variables, bc mixomics do not put 0 in loadings
                                               "W.star" = W.star,
                                               "loadings" = P,
                                               "scores" = Ts,
                                               "x.mean" = xmeans, "x.sd" = xsds),
                                      Y = list("data" = Yh,
                                               "y.mean" = ymeans, "y.sd" = ysds),
                                      survival_model = survival_model,
                                      n.comp = n.comp, #number of components
                                      n.varX = keepX,
                                      var_by_component = var_by_component,
                                      plot_accuracyPerVariable = plotVAR,
                                      call = if(returnData) func_call else NA,
                                      X_input = if(returnData) X_original else NA,
                                      Y_input = if(returnData) Y_original else NA,
                                      alpha = alpha,
                                      nsv = removed_variables,
                                      nzv = variablesDeleted,
                                      nz_coeffvar = variablesDeleted_cvar,
                                      class = pkg.env$splsdacox_dynamic,
                                      time = time)))
}

#### ### ### ### ###
# CROSS-EVALUATION #
#### ### ### ### ###

#' Cross validation splsdacox_dynamic
#' @description
#' The cv.splsdacox_dynamic function performs cross-validation for the sPLS-DA-COX-Dynamic model.
#' This model is designed to handle survival data, where the response variables are time-to-event
#' and event/censoring indicators. The function offers a comprehensive set of parameters to fine-tune
#' the cross-validation process, including options for data preprocessing, model evaluation, and
#' parallel processing.
#'
#' @details
#' The function begins by ensuring that the required libraries for evaluation metrics are installed.
#' It then checks the validity of the input parameters, such as ensuring that the response variables
#' have the appropriate column names ("time" and "event") and that the evaluation weights sum to 1.
#'
#' Data preprocessing steps include the potential removal of variables with zero or near-zero variance,
#' and the transformation of explanatory variables to ensure they are centered or scaled as specified.
#' The function also provides an option to remove variables based on their coefficient of variation.
#'
#' The core of the function revolves around the cross-validation process. Data is split into training
#' and test sets for each run and fold. For each combination of run, fold, and specified number of PLS
#' components, a sPLS-DA-COX-Dynamic model is trained. The performance of these models is then evaluated
#' using a combination of metrics, including the Akaike Information Criterion (AIC), C-index, I. Brier Score,
#' and Area Under the Curve (AUC). The function provides flexibility in choosing the evaluation metric
#' and its method.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and event
#' observations.
#' @param max.ncomp Numeric. Maximum number of PLS components to compute for the cross validation
#' (default: 8).
#' @param vector Numeric vector. Used for computing best number of variables. As many values as
#' components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL).
#' @param n_run Numeric. Number of runs for cross validation (default: 3).
#' @param k_folds Numeric. Number of folds for cross validation (default: 10).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero
#' variance filtering (default: NULL).
#' @param remove_variance_at_fold_level Logical. If remove_variance_at_fold_level = TRUE, (near)
#' zero variance will be removed at fold level. Not recommended. (default: FALSE).
#' @param remove_non_significant_models Logical. If remove_non_significant_models = TRUE,
#' non-significant models are removed before computing the evaluation.
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param MIN_NVAR Numeric. Minimum range size for computing cut points to select the best number of
#' variables to use (default: 10).
#' @param MAX_NVAR Numeric. Maximum range size for computing cut points to select the best number of
#' variables to use (default: 1000).
#' @param n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
#' If only two cut points are selected, minimum and maximum size are used. For MB approaches as many
#' as n.cut_points^n.blocks models will be computed as minimum (default: 5).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param EVAL_METHOD Character. The selected metric will be use to compute the best
#' number of variables. Must be one of the following: "AUC", "IBS" or "C.Index" (default: "AUC").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
#' @param w_C.Index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
#' @param w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
#' @param w_I.BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (default: 0).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the minimum is
#' reached, the evaluation could stop if the improvement does not reach an AUC higher than adding the
#' 'MIN_AUC_INCREASE' value (default: 0.8).
#' @param MIN_COMP_TO_CHECK Numeric. Number of penalties/components to evaluate to check if the AUC
#' improves. If for the next 'MIN_COMP_TO_CHECK' the AUC is not better and the 'MIN_AUC' is meet, the
#' evaluation could stop (default: 3).
#' @param pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
#' "mean" or "median" (default: "mean").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated
#' simultaneously. If fast_mode = FALSE, for each run, all linear predictors are computed for test
#' observations. Once all have their linear predictors, the evaluation is perform across all the
#' observations together (default: FALSE).
#' @param max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param return_models Logical. Return all models computed in cross validation (default: FALSE).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
#' total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#' @param seed Number. Seed value for performing runs/folds divisions (default: 123).
#'
#' @return Instance of class "Coxmos" and model "cv.sPLS-DACOX-Dynamic".
#' \code{best_model_info}: A data.frame with the information for the best model.
#' \code{df_results_folds}: A data.frame with fold-level information.
#' \code{df_results_runs}: A data.frame with run-level information.
#' \code{df_results_comps}: A data.frame with component-level information (for cv.coxEN, EN.alpha
#' information).
#'
#' \code{lst_models}: If return_models = TRUE, return a the list of all cross-validated models.
#' \code{pred.method}: AUC evaluation algorithm method for evaluate the model performance.
#'
#' \code{opt.comp}: Optimal component selected by the best_model.
#' \code{opt.nvar}: Optimal number of variables selected by the best_model.
#'
#' \code{plot_AIC}: AIC plot by each hyper-parameter.
#' \code{plot_C.Index}: C-Index plot by each hyper-parameter.
#' \code{plot_I.BRIER}: Integrative Brier Score plot by each hyper-parameter.
#' \code{plot_AUC}: AUC plot by each hyper-parameter.
#'
#' \code{class}: Cross-Validated model class.
#'
#' \code{lst_train_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for train the models.
#' \code{lst_test_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for test the models.
#'
#' \code{time}: time consumed for running the cross-validated function.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
#' X_train <- X_proteomic[index_train,1:50]
#' Y_train <- Y_proteomic[index_train,]
#' cv.splsdacox_dynamic_model <- cv.splsdacox(X_train, Y_train, max.ncomp = 2, vector = NULL,
#' n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.splsdacox <- function(X, Y,
                        max.ncomp = 8, vector = NULL,
                        MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 5,
                        MIN_AUC_INCREASE = 0.01,
                        n_run = 3, k_folds = 10,
                        x.center = TRUE, x.scale = FALSE,
                        remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
                        remove_variance_at_fold_level = FALSE,
                        remove_non_significant_models = FALSE, remove_non_significant = FALSE, alpha = 0.05,
                        EVAL_METHOD = "AUC",
                        w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL,
                        max_time_points = 15,
                        MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3,
                        pred.attr = "mean", pred.method = "cenROC", fast_mode = FALSE,
                        max.iter = 200,
                        MIN_EPV = 5, return_models = FALSE, returnData = FALSE,
                        PARALLEL = FALSE, verbose = FALSE, seed = 123){
  # tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
  tol = 1e-10

  t1 <- Sys.time()
  y.center = y.scale = FALSE
  FREQ_CUT <- 95/5

  #### ### ###
  # WARNINGS #
  #### ### ###

  #### Check evaluator installed:
  checkLibraryEvaluator(pred.method)

  #### Check values classes and ranges
  params_with_limits <- list("MIN_AUC_INCREASE" = MIN_AUC_INCREASE, "MIN_AUC" = MIN_AUC, "alpha" = alpha,
                 "w_AIC" = w_AIC, "w_C.Index" = w_C.Index, "w_AUC" = w_AUC, "w_I.BRIER" = w_I.BRIER)
  check_min0_max1_variables(params_with_limits)

  numeric_params <- list("max.ncomp" = max.ncomp, "MIN_NVAR" = MIN_NVAR, "n.cut_points" = n.cut_points,
                  "n_run" = n_run, "k_folds" = k_folds, "max_time_points" = max_time_points,
                  "MIN_COMP_TO_CHECK" = MIN_COMP_TO_CHECK, "MIN_EPV" = MIN_EPV, "seed" = seed, "tol" = tol)

  if(!is.null(MAX_NVAR)){
    numeric_params$MAX_NVAR <- MAX_NVAR
  }

  check_class(numeric_params, class = "numeric")

  logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
                         #"y.center" = y.center, "y.scale" = y.scale,
                      "remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
                      "remove_variance_at_fold_level" = remove_variance_at_fold_level,
                      "remove_non_significant_models" = remove_non_significant_models,
                      "remove_non_significant" = remove_non_significant,
                      "return_models" = return_models,"returnData" = returnData, "verbose" = verbose, "PARALLEL" = PARALLEL)
  check_class(logical_params, class = "logical")

  character_params <- list("EVAL_METHOD" = EVAL_METHOD, "pred.attr" = pred.attr, "pred.method" = pred.method)
  check_class(character_params, class = "character")

  #### Check cv-folds
  lst_checkFR <- checkFoldRuns(Y, n_run, k_folds, fast_mode)
  n_run <- lst_checkFR$n_run
  fast_mode <- lst_checkFR$fast_mode

  #### Check rownames
  lst_check <- checkXY.rownames(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  #### Illegal chars in colnames
  X <- checkColnamesIllegalChars(X)

  #### REQUIREMENTS
  checkX.colnames(X)
  checkY.colnames(Y)
  lst_check <- checkXY.class(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  check.cv.weights(c(w_AIC, w_C.Index, w_I.BRIER, w_AUC))
  # if(!pred.method %in% c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I")){
  #   stop_quietly(paste0("pred.method must be one of the following: ", paste0(c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I"), collapse = ", ")))
  # }
  if(!pred.method %in% pkg.env$AUC_evaluators){
    stop_quietly(paste0("pred.method must be one of the following: ", paste0(pkg.env$AUC_evaluators, collapse = ", ")))
  }

  #### MAX PREDICTORS
  max.ncomp <- check.ncomp(X, max.ncomp)
  max.ncomp <- check.maxPredictors(X, Y, MIN_EPV, max.ncomp, verbose = verbose)
  if(MIN_COMP_TO_CHECK >= max.ncomp){
    MIN_COMP_TO_CHECK = max(max.ncomp-1, 1)
  }

  #### REQUIREMENTS
  if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
    lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
                                            remove_near_zero_variance = remove_near_zero_variance,
                                            remove_zero_variance = remove_zero_variance,
                                            toKeep.zv = toKeep.zv,
                                            freqCut = FREQ_CUT)
    X <- lst_dnz$X
    variablesDeleted <- lst_dnz$variablesDeleted
  }else{
    variablesDeleted <- NULL
  }

  #### COEF VARIATION
  if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
    lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
    X <- lst_dnzc$X
    variablesDeleted_cvar <- lst_dnzc$variablesDeleted
  }else{
    variablesDeleted_cvar <- NULL
  }

  #### #
  # CV #
  #### #
  # lst_data <- splitData_Iterations_Folds(X, Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
  # lst_X_train <- lst_data$lst_X_train
  # lst_Y_train <- lst_data$lst_Y_train
  # lst_X_test <- lst_data$lst_X_test
  # lst_Y_test <- lst_data$lst_Y_test
  # k_folds <- lst_data$k_folds
  #
  # lst_train_indexes <- lst_data$lst_train_index
  # lst_test_indexes <- lst_data$lst_test_index

  lst_data <- splitData_Iterations_Folds_indexes(Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST

  lst_train_indexes <- lst_data$lst_train_index
  lst_test_indexes <- lst_data$lst_test_index

  #### ### ### ###
  # TRAIN MODELS #
  #### ### ### ###

  total_models <- 1 * k_folds * n_run

  comp_model_lst <- get_Coxmos_models2.0(method = pkg.env$splsdacox_dynamic,
                                        X_train = X, Y_train = Y,
                                        lst_X_train = lst_train_indexes, lst_Y_train = lst_train_indexes,
                                        max.ncomp = max.ncomp, penalty.list = NULL, EN.alpha.list = NULL, max.variables = NULL, vector = vector,
                                        n_run = n_run, k_folds = k_folds,
                                        MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, MIN_AUC_INCREASE = MIN_AUC_INCREASE, EVAL_METHOD = EVAL_METHOD,
                                        n.cut_points = n.cut_points,
                                        x.center = x.center, x.scale = x.scale,
                                        y.center = y.center, y.scale = y.scale,
                                        remove_near_zero_variance = remove_variance_at_fold_level, remove_zero_variance = FALSE, toKeep.zv = NULL,
                                        alpha = alpha, MIN_EPV = MIN_EPV,
                                        remove_non_significant = remove_non_significant, tol = tol,
                                        max.iter = max.iter, times = times, pred.method = pred.method, max_time_points = max_time_points,
                                        returnData = returnData, total_models = total_models,
                                        PARALLEL = PARALLEL, verbose = verbose)

  if(all(is.null(comp_model_lst))){
    message(paste0("Best model could NOT be obtained. All models computed present problems. Try to remove variance at fold level. If problem persists, try to delete manually some problematic variables."))

    t2 <- Sys.time()
    time <- difftime(t2,t1,units = "mins")
    if(return_models){
      return(cv.splsdacox_dynamic_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }else{
      return(cv.splsdacox_dynamic_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }
  }

  #### ### ### ### ### ### #
  # BEST MODEL FOR CV DATA #
  #### ### ### ### ### ### #
  total_models <- max.ncomp * k_folds * n_run
  df_results_evals <- get_COX_evaluation_AIC_CINDEX(comp_model_lst = comp_model_lst, alpha = alpha,
                                                    max.ncomp = max.ncomp, penalty.list = NULL, n_run = n_run, k_folds = k_folds,
                                                    total_models = total_models, remove_non_significant_models = remove_non_significant_models, verbose = verbose)

  if(all(is.null(df_results_evals))){
    message(paste0("Best model could NOT be obtained. All models computed present problems."))

    t2 <- Sys.time()
    time <- difftime(t2,t1,units = "mins")
    if(return_models){
      return(cv.splsdacox_dynamic_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }else{
      return(cv.splsdacox_dynamic_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsdacox_dynamic, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }
  }

  #### ### ### ### ### ### #
  # EVALUATING BRIER SCORE #
  #### ### ### ### ### ### #
  df_results_evals_comp <- NULL
  df_results_evals_run <- NULL
  df_results_evals_fold <- NULL
  optimal_comp_index <- NULL
  optimal_comp_flag <- FALSE

  if(TRUE){ #compute always BRIER SCORE
    #calculate time vector if still NULL
    if(is.null(times)){
      times <- getTimesVector(Y, max_time_points = max_time_points)
    }

    #As we are measuring just one evaluator and one method - PARALLEL = FALSE
    lst_df <- get_COX_evaluation_BRIER(comp_model_lst = comp_model_lst,
                                       fast_mode = fast_mode,
                                       X_test = X, Y_test = Y,
                                       lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
                                       df_results_evals = df_results_evals, times = times,
                                       pred.method = pred.method, pred.attr = pred.attr,
                                       max.ncomp = max.ncomp, n_run = n_run, k_folds = k_folds,
                                       MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
                                       w_I.BRIER = w_I.BRIER, method.train = pkg.env$splsdacox_dynamic, PARALLEL = FALSE, verbose = verbose)

    df_results_evals_comp <- lst_df$df_results_evals_comp
    df_results_evals_run <- lst_df$df_results_evals_run
    df_results_evals_fold <- lst_df$df_results_evals_fold
  }

  #### ### ### ### #
  # EVALUATING AUC #
  #### ### ### ### #

  if(w_AUC!=0){
    #total_models <- ifelse(!fast_mode, n_run * max.ncomp, k_folds * n_run * max.ncomp)#inside get_COX_evaluation_AUC

    #times should be the same for all folds
    #calculate time vector if still NULL
    if(is.null(times)){
      times <- getTimesVector(Y, max_time_points = max_time_points)
    }

    lst_df <- get_COX_evaluation_AUC(comp_model_lst = comp_model_lst,
                                     X_test = X, Y_test = Y,
                                     lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
                                     df_results_evals = df_results_evals, times = times,
                                     fast_mode = fast_mode, pred.method = pred.method, pred.attr = pred.attr,
                                     max.ncomp = max.ncomp, n_run = n_run, k_folds = k_folds,
                                     MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
                                     w_AUC = w_AUC, method.train = pkg.env$splsdacox_dynamic, PARALLEL = FALSE, verbose = verbose)

    if(is.null(df_results_evals_comp)){
      df_results_evals_comp <- lst_df$df_results_evals_comp
    }else{
      df_results_evals_comp$AUC <- lst_df$df_results_evals_comp$AUC
    }

    if(is.null(df_results_evals_run)){
      df_results_evals_run <- lst_df$df_results_evals_run
    }else{
      df_results_evals_run$AUC <- lst_df$df_results_evals_run$AUC
    }

    if(is.null(df_results_evals_fold)){
      df_results_evals_fold <- lst_df$df_results_evals_fold
    }else{
      df_results_evals_fold$AUC <- lst_df$df_results_evals_fold$AUC
    }

    optimal_comp_index <- lst_df$optimal_comp_index
    optimal_comp_flag <- lst_df$optimal_comp_flag
  }

  #### ### ### #
  # BEST MODEL #
  #### ### ### #

  df_results_evals_comp <- cv.getScoreFromWeight(df_results_evals_comp, w_AIC, w_C.Index, w_I.BRIER, w_AUC,
                                                 colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS")

  if(optimal_comp_flag){
    best_model_info <- df_results_evals_comp[optimal_comp_index,, drop = FALSE][1,]
    best_model_info <- as.data.frame(best_model_info)
  }else{
    best_model_info <- df_results_evals_comp[which(df_results_evals_comp[,"score"] == max(df_results_evals_comp[,"score"], na.rm = TRUE)),, drop = FALSE][1,]
    best_model_info <- as.data.frame(best_model_info)
  }

  ### ### #
  # PLOTS #
  ### ### #
  class= pkg.env$splsdacox_dynamic
  lst_EVAL_PLOTS <- get_EVAL_PLOTS(fast_mode = fast_mode, best_model_info = best_model_info, w_AUC = w_AUC, w_I.BRIER = w_I.BRIER, max.ncomp = max.ncomp,
                                   df_results_evals_fold = df_results_evals_fold, df_results_evals_run = df_results_evals_run, df_results_evals_comp = df_results_evals_comp,
                                   colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS", x.text = "Component",
                                   class = class)

  df_results_evals_comp <- lst_EVAL_PLOTS$df_results_evals_comp

  ggp_AUC <- lst_EVAL_PLOTS$ggp_AUC
  ggp_IBS <- lst_EVAL_PLOTS$ggp_IBS
  ggp_C.Index <- lst_EVAL_PLOTS$ggp_C.Index
  ggp_AIC <- lst_EVAL_PLOTS$ggp_AIC

  #### ### #
  # RETURN #
  #### ### #
  best_model_info$n.var <- as.numeric(as.character(best_model_info$n.var)) #just in case be a factor

  message(paste0("Best model obtained."))

  t2 <- Sys.time()
  time <- difftime(t2,t1,units = "mins")

  # invisible(gc())
  if(return_models){
    return(cv.splsdacox_dynamic_class(list(best_model_info = best_model_info,
                                           df_results_folds = df_results_evals_fold,
                                           df_results_runs = df_results_evals_run,
                                           df_results_comps = df_results_evals_comp,
                                           lst_models = comp_model_lst,
                                           pred.method = pred.method,
                                           opt.comp = best_model_info$n.comps,
                                           opt.nvar = best_model_info$n.var,
                                           plot_AIC = ggp_AIC,
                                           plot_C.Index = ggp_C.Index,
                                           plot_I.BRIER = ggp_IBS,
                                           plot_AUC = ggp_AUC,
                                           class= pkg.env$cv.splsdacox_dynamic,
                                           lst_train_indexes = lst_train_indexes,
                                           lst_test_indexes = lst_test_indexes,
                                           time = time)))
  }else{
    return(cv.splsdacox_dynamic_class(list(best_model_info = best_model_info,
                                           df_results_folds = df_results_evals_fold,
                                           df_results_runs = df_results_evals_run,
                                           df_results_comps = df_results_evals_comp,
                                           lst_models = NULL, pred.method = pred.method,
                                           opt.comp = best_model_info$n.comps,
                                           opt.nvar = best_model_info$n.var,
                                           plot_AIC = ggp_AIC,
                                           plot_C.Index = ggp_C.Index,
                                           plot_I.BRIER = ggp_IBS,
                                           plot_AUC = ggp_AUC,
                                           class = pkg.env$cv.splsdacox_dynamic,
                                           lst_train_indexes = lst_train_indexes,
                                           lst_test_indexes = lst_test_indexes,
                                           time = time)))
  }

}

### ## ##
# CLASS #
### ## ##

splsdacox_dynamic_class = function(pls_model, ...) {
  model = structure(pls_model, class = pkg.env$model_class,
                    model = pkg.env$splsdacox_dynamic)
  return(model)
}

cv.splsdacox_dynamic_class = function(pls_model, ...) {
  model = structure(pls_model, class = pkg.env$model_class,
                    model = pkg.env$cv.splsdacox_dynamic)
  return(model)
}

Try the Coxmos package in your browser

Any scripts or data that you put into this service are public.

Coxmos documentation built on April 4, 2025, 12:20 a.m.