tests/testsFitting.R

require("DoseFinding")
## effect curve estimate for linear type models!!

########################################################################
#### Testing function to generate doses and sample size allocs.
genDFdats <- function(model, argsMod, doses, n, sigma, mu = NULL){
  nD <- length(doses)
  dose <- sort(doses)
  if (length(n) == 1) n <- rep(n, nD)
  dose <- rep(dose,  n)
  args <- c(list(dose), argsMod)
  mu <- do.call(model, args)
  data.frame(dose = dose, resp = mu + rnorm(sum(n), sd = sigma))
}

getDosSampSiz <- function(){
  # generate dose levels
  mD <- runif(1, 0, 1500)
  nD <- max(rpois(1, 5), 4)
  p <- rgamma(nD, 3)
  p <- cumsum(p/sum(p))
  doses <- signif(c(0, mD*p), 3)

  # sample size allocations
  totSS <- rpois(1, rexp(1, 1/250))
  totSS <- max(totSS, 50)
  p <- rgamma(nD+1, 3);p <- p/sum(p)
  n <- round(p*totSS)
  n[n==0] <- rpois(sum(n==0), 1)+1
  list(doses=doses, n=n)
}

getDFdataSet <- function(doses, n){
  if(missing(doses) & missing(n)){
    ll <- getDosSampSiz()    
  } else {
    ll <- list(doses = doses, n=n)
  }

  e0 <- rnorm(1, 0, 10)
  eMax <- rgamma(1, abs(e0)*0.5, 0.5)
  sig <- eMax/runif(1, 0.5, 5)
  if(runif(1)<0.3){
    aa <- genDFdats("betaMod", c(e0 = e0, eMax = eMax, delta1=runif(1, 0.5, 4),
                delta2=runif(1, 0.5, 4), scal=1.2*max(ll$doses)),
                ll$doses, ll$n, sig)
  } else {
    aa <- genDFdats("sigEmax", c(e0 = e0, eMax = eMax,
                                 ed50=runif(1, 0.05*max(ll$doses), 1.5*max(ll$doses)),
                                 h=runif(1, 0.5, 4)), ll$doses, ll$n, sig)    
  }
  N <- sum(ll$n)
  center <- c("blue", "green", "red", "yellow", "silver")
  aa <- data.frame(x= aa$dose, y=aa$resp, center=as.factor(sample(center, N, replace = T)),
                   age=runif(N, 1, 100))
  aa[sample(1:nrow(aa)),]  
}

########################################################################
########################################################################
#### Generate data sets and compare results of fitDRModel
#### to the result of nls and lm for AIC function (if these are consistent
#### parameter estimates, residual sum of square and degrees of freedom are
#### consistent) and the vcov function (if these are consistent parameter
#### estimates, RSS, df and gradient are consistent)
########################################################################

########################################################################
#### beta Model
set.seed(2000)
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates
bnds <- matrix(c(0.05, 0.05, 6, 6), nrow=2)
fit0 <- fitMod(x, y, datset, model = "betaMod", addCovars = ~1,
               addArgs=list(scal=1.2*max(datset$x)), bnds=bnds, start=c(0.6, 0.6))
fitnls <- nls(y~betaMod(x, e0, emax, delta1, delta2, 1.2*max(datset$x)),
              start=c(e0=15, emax=14, delta1=0.8, delta2=0.5), data=datset)
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0)
vcov(fitnls)

predict(fit0, predType="effect-curve", se.fit=TRUE)
predict(fit0, predType="full-model", se.fit=TRUE)

TD(fit0, Delta = 1)

# with covariates
fit0 <- fitMod(x, y, datset, model="betaMod", addCovars = ~age+center,
               addArgs=list(scal=1.2*max(datset$x)), bnds=bnds)
XX <- model.matrix(~center+age, data=datset)
scl <- 1.2*max(datset$x)
fitnls <- nls(y~cbind(XX, betaMod(x, 0, 1, delta1, delta2, scl)),
              data=datset, start=c(delta1=1, delta2=0.2),
              algorithm = "plinear")
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", doseSeq = c(0, 100), se.fit=T)

predict(fit0, predType="full-model", se.fit=T,
        newdata = data.frame(x = c(0,100), center = as.factor("yellow"), age = 50))

TD(fit0, Delta = 1)


########################################################################
#### emax Model
set.seed(15)
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates
bnds <- c(1e-5, max(datset$x))
fit0 <- fitMod(x,y, datset, model="emax", addCovars = ~1, bnds=bnds)
fitnls <- nls(y~emax(x, e0, emax, ed50),
              start=c(e0=-1, emax=1.3, ed50=0.1), data=datset)
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", se.fit=T)

predict(fit0, predType="full-model", se.fit=T)

TD(fit0, Delta = 0.005)

# with covariates
fit0 <- fitMod(x,y, datset, model="emax", addCovars = ~age+center, bnds=bnds)
XX <- model.matrix(~center+age, data=datset)
fitnls <- nls(y~cbind(XX, emax(x, 0, 1, ed50)),
              data=datset, start=list(ed50=1), algorithm = "plinear")
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", doseSeq = c(0, 100), se.fit=T)

predict(fit0, predType="full-model", se.fit=T,
        newdata = data.frame(x = c(0,100), center = as.factor("silver"), age = 50))

TD(fit0, Delta = 0.005)

########################################################################
#### sigEmax Model 
## set.seed(25) # example where nls and bndnls find different optimum
set.seed(13)
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates
bnds <- matrix(c(1e-5, 1e-5, max(datset$x), 30), nrow=2)
fit0 <- fitMod(x,y, datset, model = "sigEmax", addCovars = ~1, bnds=bnds)
fitnls <- nls(y~sigEmax(x, e0, emax, ed50, h),
              start=c(e0=6, emax=17, ed50=240, h=2), data=datset)
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", se.fit=T)

predict(fit0, predType="full-model", se.fit=T)

TD(fit0, Delta = 1)

# with covariates
fit0 <- fitMod(x,y, datset, model="sigEmax", addCovars = ~age+center, bnds=bnds)
XX <- model.matrix(~center+age, data=datset)
fitnls <- nls(y~cbind(XX, sigEmax(x, 0, 1, ed50, h)),
              data=datset, start=list(ed50=368, h=2), algorithm = "plinear")
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", doseSeq = c(0, 100), se.fit=T)

predict(fit0, predType="full-model", se.fit=T,
        newdata = data.frame(x = c(0,100), center = as.factor("silver"), age = 50))

TD(fit0, Delta = 1)

########################################################################
#### logistic Model
set.seed(200)
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates 
bnds <- matrix(c(1e-5, 1e-5, max(datset$x), max(datset$x)/2), nrow=2)
fit0 <- fitMod(x,y, datset, model="logistic", addCovars = ~1, bnds=bnds)
fitnls <- nls(y~logistic(x, e0, emax, ed50, delta),
              start=c(e0=0, emax=16, ed50=250, delta=90), data=datset)
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", se.fit=T)

predict(fit0, predType="full-model", se.fit=T)

TD(fit0, Delta = 0.5)

# with covariates (example where nls and bndnls find different optima)
fit0 <- fitMod(x,y, datset, model="logistic", addCovars = ~age+center, bnds=bnds) 
XX <- model.matrix(~center+age, data=datset)
fitnls <- nls(y~cbind(XX, logistic(x, 0, 1, ed50, delta)),
              data=datset, start=list(ed50=220, delta=48), algorithm = "plinear")
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", doseSeq = c(0, 100), se.fit=T)

predict(fit0, predType="full-model", se.fit=T,
        newdata = data.frame(x = c(0,100), center = as.factor("silver"), age = 5))

TD(fit0, Delta = 0.02)

########################################################################
#### exponential Model
set.seed(4)
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates
bnds <- c(0.1, 2)*max(datset$x)
fit0 <- fitMod(x,y, datset, model = "exponential", addCovars = ~1, bnds=bnds)
fitnls <- nls(y~exponential(x, e0, e1, delta),
              start=coef(fit0), data=datset)
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", se.fit=T)

predict(fit0, predType="full-model", se.fit=T)

TD(fit0, Delta = 0.1)

# with covariates
bnds <- c(0.1, 2)*max(datset$x)
fit0 <- fitMod(x,y, datset, model = "exponential", addCovars = ~age+center,
               bnds=bnds)
XX <- model.matrix(~center+age, data=datset)
fitnls <- nls(y~cbind(XX, exponential(x, 0, 1, delta)),
              data=datset, start=c(delta=450), algorithm = "plinear")
AIC(fit0)
AIC(fitnls)
summary(fit0)
summary(fitnls)

vcov(fit0 )
vcov(fitnls)

predict(fit0, predType="effect-curve", doseSeq = c(0, 100), se.fit=T)

predict(fit0, predType="full-model", se.fit=T,
        newdata = data.frame(x = c(0,100), center = as.factor("blue"), age = 50))

TD(fit0, Delta = 0.1)

########################################################################
#### linear model
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates
fit0 <- fitMod(x,y, datset, model = "linear", addCovars = ~1)
fitlm <- lm(y~x, data=datset)
AIC(fit0)
AIC(fitlm)
summary(fit0)
summary(fitlm)

vcov(fit0 )
vcov(fitlm)

predict(fit0, predType="effect-curve", se.fit=T)

TD(fit0, Delta = 1)

# with covariates
fit0 <- fitMod(x,y, datset, model = "linear", addCovars = ~age+center)
fitlm <- lm(y~x+age+center, data=datset)
AIC(fit0)
AIC(fitlm)
summary(fit0) 
summary(fitlm) 

vcov(fit0 )
vcov(fitlm)

predict(fit0, predType="effect-curve", se.fit=T)
predict(fit0, predType = "f", se.fit = T,
        newdata = data.frame(x=c(0,1,2,100), age = 30, center = as.factor("blue")))
predict(fitlm, se.fit = T,
        newdata = data.frame(x=c(0,1,2,100), age = 30, center = as.factor("blue")))

TD(fit0, Delta = 1)

########################################################################
#### linlog model
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)
off <- 0.05*max(datset$x)

# without covariates
fit0 <- fitMod(x,y, datset, model = "linlog", addCovars = ~1,addArgs=list(off=off))
fitlm <- lm(y~log(x+off), data=datset)
AIC(fit0)
AIC(fitlm)
summary(fit0)
summary(fitlm)

vcov(fit0 )
vcov(fitlm)

predict(fit0, predType="effect-curve", se.fit=T) ## bug ##

TD(fit0, Delta = 1)

# with covariates
fit0 <- fitMod(x,y, datset, model = "linlog", addCovars = ~age+center,
               addArgs=list(off=off))
fitlm <- lm(y~log(x+off)+age+center, data=datset)
AIC(fit0)
AIC(fitlm)
summary(fit0)
summary(fitlm)

vcov(fit0 )
vcov(fitlm)

predict(fit0, predType = "f", se.fit = T, ## degrees of freedom wrong ##
        newdata = data.frame(x=c(0,1,2,100), age = 35, center = as.factor("blue")))
predict(fitlm, se.fit = T,
        newdata = data.frame(x=c(0,1,2,100), age = 35, center = as.factor("blue")))

TD(fit0, Delta = 1)


########################################################################
#### quadratic model
ll <- getDosSampSiz()
datset <- getDFdataSet(ll$doses, ll$n)

# without covariates
fit0 <- fitMod(x,y, datset, model = "quadratic", addCovars = ~1)
fitlm <- lm(y~x+I(x^2), data=datset)
AIC(fit0)
AIC(fitlm)
summary(fit0)
summary(fitlm)

vcov(fit0 )
vcov(fitlm)

predict(fit0, predType="effect-curve", se.fit=T)

predict(fit0, predType="full-model", se.fit=T,
        newdata=data.frame(x=c(0, 10, 100)))
predict(fitlm,  se.fit=T,
        newdata=data.frame(x=c(0, 10, 100)))

TD(fit0, Delta = 1)

# with covariates
fit0 <- fitMod(x,y, datset, model = "quadratic", addCovars = ~age+center)
fitlm <- lm(y~x+I(x^2)+age+center, data=datset)
AIC(fit0)
AIC(fitlm)
summary(fit0)
summary(fitlm)

vcov(fit0 )
vcov(fitlm)

predict(fit0, predType = "f", se.fit = T,
        newdata=data.frame(x=c(0, 10, 100), age = 30, center = as.factor("blue")))
predict(fitlm, se.fit = T,
        newdata=data.frame(x=c(0, 10, 100), age = 30, center = as.factor("blue")))

TD(fit0, Delta = 0.1)

########################################################################
## ensure that predict with no argument uses the original data not the
## sorted data that were used for fitting

data(IBScovars)
ff <- fitMod(dose, resp, data=IBScovars, model="quadratic",
             addCovars = ~gender)
## should be all zero
predict(ff, predType = "ls-means")-
predict(ff, predType = "ls-means", doseSeq = IBScovars[,3])
predict(ff, predType = "full-model")-
predict(ff, predType = "full-model", newdata = IBScovars[,-2])
predict(ff, predType = "effect-curve")-
predict(ff, predType = "effect-curve", doseSeq = IBScovars[,3])

ff2 <- fitMod(dose, resp, data=IBScovars, model="quadratic")
## should be all zero
predict(ff2, predType = "ls-means")-
predict(ff2, predType = "ls-means", doseSeq = IBScovars[,3])
predict(ff2, predType = "full-model")-
predict(ff2, predType = "full-model", newdata = IBScovars[,-2])
predict(ff2, predType = "effect-curve")-
predict(ff2, predType = "effect-curve", doseSeq = IBScovars[,3])

dose <- unique(IBScovars$dose)
ord <- c(2,4,1,3,5)
mns <- tapply(IBScovars$resp, IBScovars$dose, mean)[ord]
ff3 <- fitMod(dose, mns, S=diag(5), model="quadratic", type = "general")
predict(ff3, predType = "ls-means")-
predict(ff3, predType = "ls-means", doseSeq = dose)
predict(ff3, predType = "effect-curve")-
predict(ff3, predType = "effect-curve", doseSeq = dose)

########################################################################
## ensure that S is also sorted when the dose is not entered sorted
dose <- sort(unique(IBScovars$dose))
mns <- tapply(IBScovars$resp, IBScovars$dose, mean)
S <- c(1000,1,1,1,1)*diag(5)
ff1 <- fitMod(dose, mns, S = S, model="linear", type="general")
## fit unsorted
dose <- unique(IBScovars$dose)
ord <- c(2,4,1,3,5)
mns <- tapply(IBScovars$resp, IBScovars$dose, mean)[ord]
ff2 <- fitMod(dose, mns, S = S, model="linear", type="general")
ff3 <- fitMod(dose, mns, S = S[ord,ord], model="linear", type="general")
## coef(ff1) & coef(ff3) should be equal
coef(ff1)
coef(ff3)

Try the DoseFinding package in your browser

Any scripts or data that you put into this service are public.

DoseFinding documentation built on Sept. 11, 2024, 9:04 p.m.