Nothing
context("Optimal Contrasts")
require_extra_packages <- function() {
if (!(require("quadprog") && require("Rsolnp"))) {
skip("packages quadprog and Rsolnp not available")
}
}
# calculation of optimal contrast by enumerating all active sets
allActiveSets <- function(S, mu, mult){
k <- length(mu)
CC <- cbind(-1, diag(k - 1))
SPa <- CC %*% S %*% t(CC)
muPa <- as.numeric(CC %*% mu)
# generate all possible active sets
mat <- matrix(nrow = 2^(k-1), ncol = (k-1))
for(i in 1:(k-1))
mat[,i] <- rep(rep(c(FALSE,TRUE), each=2^(i-1)), 2^((k-1)-i))
val <- numeric(2^(k-1))
feasible <- logical(2^(k-1))
cont <- matrix(nrow = 2^(k-1), ncol = (k-1))
for(i in 1:(2^(k-1))){
nonzero <- mat[i,]
if(sum(nonzero) > 0){
cont[i,!nonzero] <- 0
cont[i,nonzero] <- solve(SPa[nonzero, nonzero]) %*% muPa[nonzero]
feasible[i] <- all(mult*cont[i,] >= 0)
contrast <- c(-sum(cont[i,]), cont[i,])
val[i] <- as.numeric(t(contrast)%*%mu/sqrt(t(contrast)%*%S%*%contrast))
}
}
if(!any(feasible))
return(rep(NA, k))
mm <- max(val[which(feasible)])
c(-sum(cont[val == mm,]), cont[val == mm,])
}
# helper functions
getStand <- function(x) x/sqrt(sum(x^2))
getNCP <- function(cont, mu, S) {
as.numeric(t(cont)%*%mu/sqrt(t(cont)%*%S%*%cont))
}
one_sim <- function() {
cont <- vector("list", 5)
# simulate mean and covariance matrix
kk <- round(runif(1, 4, 10))
A <- matrix(runif(kk^2, -1, 1), kk, kk)
S <- crossprod(A)+diag(kk)
S_inv <- solve(S)
mult <- sign(rnorm(1))
mu <- mult*sort(rnorm(kk, 1:kk, 1))
# unconstrained solution
ones <- rep(1, kk)
unConst <- S_inv%*%(mu - c(t(mu)%*%S_inv%*%ones/(t(ones)%*%S_inv%*%ones)))
cont[[1]] <- getStand(unConst)
# function from DoseFinding package
cont[[2]] <- DoseFinding:::constOptC(mu, S_inv, placAdj=FALSE,
ifelse(mult == 1, "increasing", "decreasing"))
# alternative solution using quadratic programming
A <- t(rbind(rep(1, kk), mu,
mult * diag(kk) * c(-1, rep(1, kk - 1))))
bvec <- c(0, 1, rep(0, kk))
rr <- solve.QP(S, rep(0, kk), A, bvec, meq = 2)
cont[[3]] <- getStand(rr$solution)
# using solnp
mgetNCP <- function(x, ...){
cont <- c(-sum(x), x)
-getNCP(cont, ...)
}
res <- solnp(rep(1, kk-1), mgetNCP, mu=mu, S=S,
LB=rep(0, kk-1), UB=rep(20, kk-1),
control = list(trace = 0))
cont[[4]] <- getStand(c(-sum(res$pars), res$pars))
# using enumeration
cont[[5]] <- allActiveSets(S=S, mu=mu, mult=mult)
return(sapply(cont, getNCP, mu = mu, S = S))
}
test_that("calculation of contrasts works", {
skip_on_cran()
set.seed(1)
require_extra_packages()
ncps <- replicate(1000, one_sim())
## calculate best result among alternative methods (solnp sometimes fails)
best_ncp <- apply(ncps[c(3,4,5),], 2, max)
## compare to DoseFinding::constOptC
expect_equal(ncps[2,], best_ncp)
})
test_that("constant shapes are handled correctly", {
data(biom)
# define shapes for which to calculate optimal contrasts
modlist <- Mods(emax = 0.05, linear = NULL, logistic = c(0.5, 0.1),
linInt = rbind(c(0, 0, 0, 1), c(0, 1, 1, 1)),
doses = c(0, 0.05, 0.2, 0.6, 1), placEff = 1)
cont_mat <- function(doses, placAdj, type) {
optContr(modlist, w=1, doses=doses, placAdj=placAdj, type = type)$contMat
}
## code should notice that linInt shapes are constant over specified dose rng (no contrast can be calculated)
expect_message(cont_mat(0.05, TRUE, "u"), "The linInt1, linInt2 models have a constant shape, cannot
calculate optimal contrasts for these shapes.")
expect_message(cont_mat(0.05, TRUE, "c"), "The linInt1, linInt2 models have a constant shape, cannot
calculate optimal contrasts for these shapes.")
expect_message(cont_mat(c(0.05, 0.5), TRUE, "u"), "The linInt1 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
expect_message(cont_mat(c(0.05, 0.5), TRUE, "c"), "The linInt1 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
expect_message(cont_mat(c(0, 0.05), FALSE, "u"), "The linInt1, linInt2 models have a constant shape, cannot
calculate optimal contrasts for these shapes.")
expect_message(cont_mat(c(0, 0.05), FALSE, "c"), "The linInt1, linInt2 models have a constant shape, cannot
calculate optimal contrasts for these shapes.")
expect_message(cont_mat(c(0, 0.05, 0.5), FALSE, "u"), "The linInt1 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
expect_message(cont_mat(c(0, 0.05, 0.5), FALSE, "c"), "The linInt1 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
## in case of all constant shapes stop with error
modlist2 <- Mods(linInt = rbind(c(0, 1, 1, 1), c(0, 0, 0, 1)),
doses = c(0, 0.05, 0.2, 0.6, 1), placEff = 1)
expect_error(optContr(modlist2, w=1, doses=c(0.05), placAdj=TRUE, type = "u"),
"All models correspond to a constant shape, no optimal contrasts calculated.")
expect_error(optContr(modlist2, w=1, doses=c(0.05), placAdj=TRUE, type = "c"),
"All models correspond to a constant shape, no optimal contrasts calculated.")
expect_error(optContr(modlist2, w=1, doses=c(0, 0.05), placAdj=FALSE, type = "u"),
"All models correspond to a constant shape, no optimal contrasts calculated.")
expect_error(optContr(modlist2, w=1, doses=c(0, 0.05), placAdj=FALSE, type = "c"),
"All models correspond to a constant shape, no optimal contrasts calculated.")
## mixed cases where some linInt models are non-constant
expect_message(optContr(modlist2, w=1, doses=c(0.05, 0.5), placAdj=TRUE, type = "u"), "The linInt2 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
expect_message(optContr(modlist2, w=1, doses=c(0.05, 0.5), placAdj=TRUE, type = "c"), "The linInt2 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
expect_message(optContr(modlist2, w=1, doses=c(0, 0.05, 0.5), placAdj=FALSE, type = "u"), "The linInt2 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
expect_message(optContr(modlist2, w=1, doses=c(0, 0.05, 0.5), placAdj=FALSE, type = "c"), "The linInt2 model has a constant shape, cannot
calculate optimal contrasts for this shape.")
})
test_that("optContr errors when invalid inputs are provided", {
expect_error(optContr(models = list(), doses = c(0, 10), w = c(1, 1)),
"models needs to be of class Mods")
models <- Mods(linear = NULL, emax = 25, direction = c("increasing", "decreasing"), doses = c(0, 10))
models <- Mods(linear = NULL, doses = c(0, 10))
expect_error(optContr(models, doses = c(0, 10)),
"Need to specify exactly one of \"w\" or \"S\"")
expect_error(optContr(models, doses = c(0, 10), w = c(1, 1), S = diag(2)),
"Need to specify exactly one of \"w\" or \"S\"")
expect_error(optContr(models, doses = c(0, 10), w = c(1, 1), placAdj = TRUE),
"If placAdj == TRUE there should be no placebo group in \"doses\"")
expect_error(optContr(models, doses = c(0, 10), w = c(1, 1, 1)),
"w needs to be of length 1 or of the same length as doses")
expect_error(optContr(models, doses = c(0, 10), S = c(1, 1)),
"S needs to be a matrix")
})
models <- Mods(linear = NULL, doses = c(0, 10))
test_that("print.optContr prints contrast matrix", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
expect_output(print(contMat), "Optimal contrasts\n.*")
})
test_that("summary.optContr summarizes and prints an optContr object", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
expect_output(summary(contMat), "Optimal contrasts\n.*")
expect_output(summary(contMat), "Contrast Correlation Matrix:.*")
})
test_that("plot.optContr plots contrast coefficients", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
expect_silent(plot(contMat, plotType = "contrasts"))
expect_silent(plot(contMat, plotType = "means"))
})
test_that("plotContr creates a ggplot object for the contrast coefficients", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
expect_s3_class(plotContr(contMat), "ggplot")
})
test_that("plotContr creates a ggplot object with the correct data", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
plot <- plotContr(contMat)
# Ensure all dose levels are present in the plot
expect_true(all(levels(as.factor(plot$data$dose)) %in% c(0, 10)))
# Ensure all models are present in the plot
expect_true(all(levels(as.factor(plot$data$model)) %in% c("linear")))
# Check y-axis label
expect_equal(plot$labels$y, "Contrast coefficients")
# Check x-axis label
expect_equal(plot$labels$x, "Dose")
})
test_that("lattice plot for optContr with superpose options works correctly", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
expect_no_error(plot(contMat, plotType = "contrasts", superpose = TRUE))
})
test_that("lattice plot for optContr without superpose options works correctly", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
expect_no_error(plot(contMat, plotType = "contrasts", superpose = FALSE))
})
# Additional test to ensure plotContr produces the correct ggplot2 plot
test_that("plotContr returns a ggplot2 plot with correct elements", {
models <- Mods(linear = NULL, doses = c(0, 10, 25, 50, 100, 150))
contMat <- optContr(models, doses = c(0, 10, 25, 50, 100, 150), w = rep(50, 6))
p <- plotContr(contMat)
expect_s3_class(p, "ggplot")
expect_equal(p$theme$legend.position, "top")
})
# Additional test to ensure plot.optContr correctly sets y-axis labels
test_that("plot.optContr sets correct y-axis labels", {
contMat <- optContr(models, doses = c(0, 10), w = c(1, 1))
p1 <- plot(contMat, plotType = "contrasts", ylab = "Contrast coefficients")
expect_equal(p1$ylab, "Contrast coefficients")
p2 <- plot(contMat, plotType = "means", ylab = "Normalized model means")
expect_equal(p2$ylab, "Normalized model means")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.