R/readPISA_YAFS.R

Defines functions parseSPSS_PISA_YAFS_ValueLabels parseSPSS_PISA_YAFS_VariableLabels parseSPSS_PISA_YAFS_DataList getSPSS_PISA_YAFS_Part parseSPSS_PISA_YAFS buildPVVARS_PISA_YAFS identifyPVVARS_PISA_YAFS buildPISA_YAFS_DataListMerged buildPISA_YAFS_DataList buildPISA_YAFS_WeightList identifyPISA_YAFS_Weights readPISA_YAFS

Documented in readPISA_YAFS

#' @title PISA YAFS (Young Adult Follow-up Study)
#'
#' @description Opens a connection to the Programme for International Student Assessment (PISA) YAFS 2016 data file and
#'              returns an \code{edsurvey.data.frame} with
#'              information about the file and data.
#'
#' @param datPath a character value of the file location where the data file (.dat) file is saved.
#' @param spsPath a character value of the file location where the SPSS (.sps) script file is saved to parse the \code{datPath} data file.
#' @param esdf_PISA2012_USA (optional) an \code{edsurvey.data.frame} of the USA PISA 2012 data if planning to analyze the PISA YAFS data alongside the USA PISA 2012 dataset.
#'
#' @details Reads in the unzipped files for the PISA YAFS.  The PISA YAFS dataset is a follow-up study of a subset of the students who
#' participated in the PISA 2012 USA study.  It can be analyzed on its own as a singular dataset or optionally merged with the PISA 2012 USA data,
#' in which case there will be two sets of weights in the merged dataset (the default PISA YAFS weights and the PISA 2012 USA weights).
#'
#' @return An \code{edsurvey.data.frame} for the PISA YAFS dataset if the \code{esdf_PISA2012_USA} parameter is \code{NULL}.  If the PISA 2012 USA \code{edsurvey.data.frame} is specified for the \code{esdf_PISA2012_USA}
#' parameter, then the resulting dataset will return an \code{edsurvey.data.frame} allowing analysis for a combined dataset.
#'
#' @seealso \code{\link{readPISA}}
#' @author Tom Fink
#' @example man/examples/readPISA_YAFS.R
#' @export
readPISA_YAFS <- function(datPath = file.path(getwd(), "PISA_YAFS2016_Data.dat"),
                          spsPath = file.path(getwd(), "PISA_YAFS2016_SPSS.sps"),
                          esdf_PISA2012_USA = NULL) {
  # temporarily adjust any necessary option settings; revert back when done
  userOp <- options(OutDec = ".")
  on.exit(options(userOp), add = TRUE)

  datPath <- suppressWarnings(normalizePath(unique(datPath), winslash = "/"))
  spsPath <- suppressWarnings(normalizePath(unique(spsPath), winslash = "/"))

  if (!file.exists(datPath)) {
    stop(eout(paste0("Cannot find specified ", sQuote("datPath"), " file ", sQuote(datPath), ".")))
  }
  if (!file.exists(spsPath)) {
    stop(eout(paste0("Cannot find specified ", sQuote("spsPath"), " file ", sQuote(spsPath), ".")))
  }

  if (is.null(esdf_PISA2012_USA)) {
    esdf_PISA2012_USA <- NULL
    hasPISA2012_USA <- FALSE
  } else {
    checkDataClass(esdf_PISA2012_USA, c("edsurvey.data.frame"))

    if (esdf_PISA2012_USA$survey != "PISA") {
      stop(paste0("The argument ", sQuote("esdf_PISA2012_USA"), " must be for the 2012 United States of American PISA survey."))
    }

    if (esdf_PISA2012_USA$country != "United States of America") {
      stop(paste0("The argument ", sQuote("esdf_PISA2012_USA"), " must be for the 2012 United States of American PISA survey."))
    }

    if (esdf_PISA2012_USA$year != "2012") {
      stop(paste0("The argument ", sQuote("esdf_PISA2012_USA"), " must be for the 2012 United States of American PISA survey."))
    }

    hasPISA2012_USA <- TRUE
  }

  fileFormat <- parseSPSS_PISA_YAFS(spsPath)
  fileFormat <- validateFWF_FileFormat(fileFormat) # ensure no FWF spacing gaps

  lafObj <- laf_open_fwf(datPath, fileFormat$dataType, fileFormat$Width, column_names = fileFormat$variableName)

  # validate LaF can read data
  tryCatch(lafObj[1, ],
    error = function(e) {
      close(lafObj)
      stop(e)
    }
  )

  fileFormat <- identifyPISA_YAFS_Weights(fileFormat)

  weights <- buildPISA_YAFS_WeightList(fileFormat)
  attr(weights, "default") <- "w_yfstuwt"

  fileFormat <- identifyPVVARS_PISA_YAFS(fileFormat)
  pvs <- buildPVVARS_PISA_YAFS(fileFormat)
  attr(pvs, "default") <- "lit"

  omittedLevels <- c("NA", "N/A", "Not Applicable", "Invalid", "No Response", NA, "(Missing)", "ESO non-respondents", "Valid Skip", "Not Answered")

  # achievement level definition
  achList <- list()
  achLevel <- c(176, 226, 276, 326, 376)
  names(achLevel) <- c("Proficiency Level 1", "Proficiency Level 2", "Proficiency Level 3", "Proficiency Level 4", "Proficiency Level 5")
  achList$Literacy <- achLevel
  achList$Numeracy <- achLevel

  subj <- c("Literacy", "Numeracy")
  surveyName <- "PISA YAFS"

  if (hasPISA2012_USA) {
    subj <- c(subj, esdf_PISA2012_USA$subject)

    dataList <- buildPISA_YAFS_DataListMerged(lafObj, fileFormat, esdf_PISA2012_USA)

    # adjust other details about the edsurvey.data.frame to accomodate both datasets
    weights <- c(weights, esdf_PISA2012_USA$weights)
    attr(weights, "default") <- "w_yfstuwt"

    pvs <- c(pvs, esdf_PISA2012_USA$pvvars)
    attr(pvs, "default") <- "lit"

    achList <- c(achList, esdf_PISA2012_USA$achievementLevels)

    psuVar <- esdf_PISA2012_USA$psuVar
    stratumVar <- esdf_PISA2012_USA$stratumVar

    omittedLevels <- unique(c(omittedLevels, esdf_PISA2012_USA$omittedLevels))

    validateFactorLabels <- TRUE

    surveyName <- "PISA YAFS merged w/ USA PISA 2012"
  } else {
    dataList <- buildPISA_YAFS_DataList(lafObj, fileFormat) # PISA YAFS Only

    psuVar <- NULL
    stratumVar <- NULL

    validateFactorLabels <- FALSE
  }


  edsurvey.data.frame(
    userConditions = list(),
    defaultConditions = NULL,
    dataList = dataList,
    weights = weights,
    pvvars = pvs,
    subject = subj,
    year = "2016",
    assessmentCode = "Longitudinal",
    dataType = "Longitudinal Data",
    gradeLevel = "",
    achievementLevels = achList, # no achievement levels
    omittedLevels = omittedLevels,
    survey = surveyName,
    country = "USA",
    psuVar = psuVar,
    stratumVar = stratumVar,
    jkSumMultiplier = 0.05, # same as PISA specification
    validateFactorLabels = validateFactorLabels, # the validateFactorLabels will check in `getData` if all values have a defined label, any missing labels will be automatically added.
    reqDecimalConversion = FALSE
  ) # decimal conversion is not needed
}


# identified the ELS weights based on the file format data.frame and marks them as weights TRUE/FALSE in the fileFormat
identifyPISA_YAFS_Weights <- function(fileFormat) {
  varNames <- fileFormat$variableName

  # identify weight vars
  wgtVars <- grep("^W_YFSTUWT$", varNames, value = TRUE, ignore.case = TRUE)

  # TRUE/FALSE on if the variable is a weight at all
  fileFormat$weights <- fileFormat$variableName %in% wgtVars

  return(fileFormat)
}

# prepares the weight list for the edsurvey.data.frame based on the identified TRUE weights in the fileFormat
buildPISA_YAFS_WeightList <- function(fileFormat) {
  wgtVars <- fileFormat[fileFormat$weights == TRUE, "variableName"]

  # no wgts found
  if (length(wgtVars) == 0) {
    return(NULL)
  }

  weights <- list()

  for (xWgt in wgtVars) {
    tempVar <- tolower(substr(xWgt, 1, 6)) # grab the left 6 characters

    wgtPattern <- paste0("^", tempVar, "R\\d+$")
    ujkz <- unique(tolower(grep(wgtPattern, fileFormat$variableName, value = TRUE, ignore.case = TRUE)))
    ujkz <- ujkz[ujkz != tempVar] # remove the weight value itself from the replicates

    ujkz <- gsub(tempVar, "", ujkz, ignore.case = TRUE) # strip away and leave just the numeric variable name ending as a string
    ujkz <- gsub("R", "", ujkz, ignore.case = TRUE)

    if (length(ujkz) > 0) {
      tmpWgt <- list()
      tmpWgt[[1]] <- list(jkbase = paste0(tempVar, "r"), jksuffixes = as.character(ujkz))
      names(tmpWgt)[[1]] <- xWgt
      weights <- c(weights, tmpWgt)
    }
  }

  return(weights)
}

buildPISA_YAFS_DataList <- function(dataLaF, fileFormat) {
  dataList <- list()

  # build the list hierarchical based on the order in which the data levels would be merged in getData
  dataList[["Data"]] <- dataListItem(
    lafObject = dataLaF,
    fileFormat = fileFormat,
    levelLabel = "Data",
    forceMerge = TRUE,
    parentMergeLevels = NULL,
    parentMergeVars = NULL,
    mergeVars = NULL,
    ignoreVars = NULL,
    isDimLevel = TRUE
  )

  return(dataList)
}

buildPISA_YAFS_DataListMerged <- function(dataLaF, fileFormat, esdf_pisa2012_USA) {
  dataList <- list()

  # fileformat columns are different between PISA USA 2012 (14 cols) and PISA YAFS (11 cols) from the read-in
  # normalize them otherwise errors occur in getData

  pisaDL <- esdf_pisa2012_USA$dataList[[1]]
  pisaDL$levelLabel <- "PISA2012_USA"

  pFF <- pisaDL$fileFormat
  pFF <- pFF[colnames(fileFormat)]

  # fix issue for having 'repeat' as a variable name which is a reserved keyword in R.
  # this gets automatically fixed in the LaF package to a variable name of 'repeat.' so this corrects that issue!
  pFF$variableName[pFF$variableName %in% c("repeat")] <- paste0(pFF$variableName[pFF$variableName %in% c("repeat")], ".")

  pisaDL$fileFormat <- pFF

  # build the list hierarchical based on the order in which the data levels would be merged in getData
  dataList[["PISA2012_USA"]] <- pisaDL

  dataList[["PISA_YAFS"]] <- dataListItem(
    lafObject = dataLaF,
    fileFormat = fileFormat,
    levelLabel = "PISA_YAFS",
    forceMerge = FALSE,
    parentMergeLevels = c("PISA2012_USA", "PISA2012_USA"),
    parentMergeVars = c("schoolid", "stidstd"),
    mergeVars = c("schoolid", "stidstd"),
    ignoreVars = NULL, # only overlapping variables are the merge variables so you don't need to specify anything
    isDimLevel = FALSE
  )

  return(dataList)
}

identifyPVVARS_PISA_YAFS <- function(fileFormat) {
  # find the index postions of the PVVAR variables
  pvIdx <- which(grepl("^PV[0-9]+(LIT|NUM)$", fileFormat$variableName, ignore.case = TRUE), arr.ind = TRUE)

  # pull out the weight (1 to 10) value
  wtVal <- gsub("[A-z]", "", fileFormat$variableName[pvIdx], ignore.case = TRUE)

  fileFormat$pvWt[pvIdx] <- wtVal

  pvvar <- tolower(substr(fileFormat$variableName[pvIdx], nchar(fileFormat$variableName[pvIdx]) - 2, nchar(fileFormat$variableName[pvIdx])))

  fileFormat$Type[pvIdx] <- pvvar

  return(fileFormat)
}

# builds the list of pvvars from the passed fileformat data.frame
buildPVVARS_PISA_YAFS <- function(fileFormat, defaultPV = "lit") {
  pvFields <- subset(fileFormat, nchar(fileFormat$Type) > 0) # type is identified in identifyPVVARS_PISA_YAFS function
  constructs <- unique(pvFields$Type)
  pvvars <- vector("list", length(constructs))
  names(pvvars) <- constructs

  for (i in names(pvvars)) {
    varList <- tolower(pvFields$variableName[pvFields$Type == i]) # don't sort here to keep them in 1-10 order (as ordered in the data)

    achLevel <- c(176, 226, 276, 326, 376)
    names(achLevel) <- c("Proficiency Level 1", "Proficiency Level 2", "Proficiency Level 3", "Proficiency Level 4", "Proficiency Level 5")

    pvvars[[i]] <- list(varnames = varList, achievementLevel = achLevel)
  }

  # test if defaultPV in the list and make it default::otherwise set it to the first pvvar in the list
  if (defaultPV %in% names(pvvars)) {
    attr(pvvars, "default") <- defaultPV
  } else {
    attr(pvvars, "default") <- names(pvvars)[1]
  }

  return(pvvars)
}

# parses the SPSS script accompanying the PISA YAFS fixed-width data file into a formated fileFormat object
parseSPSS_PISA_YAFS <- function(spssFP) {
  if (!file.exists(spssFP)) {
    stop(paste0("Unable to locate ", dQuote("spssFP"), " file at location: ", dQuote(spssFP)))
  }

  lines <- readLines(spssFP)
  lines <- lines[!(nchar(trimws(lines, which = "both")) == 0)] # remove empty lines

  functionStartRow <- list()
  functionStartRow$fileHandle <- which(grepl("^FILE HANDLE", lines, ignore.case = TRUE), arr.ind = TRUE)
  functionStartRow$dataList <- which(grepl("^DATA LIST", lines, ignore.case = TRUE), arr.ind = TRUE)
  functionStartRow$variableLabels <- which(grepl("^VARIABLE LABELS", lines, ignore.case = TRUE), arr.ind = TRUE)
  functionStartRow$missingValues <- which(grepl("^MISSING VALUES", lines, ignore.case = TRUE), arr.ind = TRUE)
  functionStartRow$valueLabels <- which(grepl("^VALUE LABELS", lines, ignore.case = TRUE), arr.ind = TRUE)

  functionPart <- list()
  functionPart$fileHandle <- getSPSS_PISA_YAFS_Part(lines, functionStartRow$fileHandle)
  functionPart$dataList <- getSPSS_PISA_YAFS_Part(lines, functionStartRow$dataList)
  functionPart$variableLabels <- getSPSS_PISA_YAFS_Part(lines, functionStartRow$variableLabels)
  functionPart$missingValues <- getSPSS_PISA_YAFS_Part(lines, functionStartRow$missingValues)
  functionPart$valueLabels <- getSPSS_PISA_YAFS_Part(lines, functionStartRow$valueLabels)

  # get a list of each individual parts pieces of info
  dl <- parseSPSS_PISA_YAFS_DataList(functionPart$dataList)
  varLbl <- parseSPSS_PISA_YAFS_VariableLabels(functionPart$variableLabels)
  valLbl <- parseSPSS_PISA_YAFS_ValueLabels(functionPart$valueLabels)

  dict <- list(
    "variableName" = character(0),
    "Start" = integer(0),
    "End" = integer(0),
    "Width" = integer(0),
    "Decimal" = integer(0),
    "Labels" = character(0),
    "labelValues" = character(0),
    "Type" = character(0),
    "pvWt" = character(0),
    "dataType" = character(0),
    "weights" = character(0)
  )

  dict$variableName <- dl$variableName
  dict$Start <- dl$Start
  dict$End <- dl$End
  dict$Width <- dl$Width

  i <- 1
  for (var in dict$variableName) {
    xLbl <- varLbl$varDesc[tolower(varLbl$variableName) == tolower(var)]
    xValLbl <- valLbl$valLblDesc[tolower(valLbl$variableName) == tolower(var)]
    xAttr <- dl$Attributes[tolower(dl$variableName) == tolower(var)]
    xAttr <- gsub("(", "", xAttr, fixed = TRUE)
    xAttr <- gsub(")", "", xAttr, fixed = TRUE)

    dict$Labels[[i]] <- ifelse(length(xLbl) > 0, xLbl, "")
    dict$labelValues[[i]] <- ifelse(length(xValLbl) > 0, xValLbl, "")

    if (grepl("^[0-9]+$", xAttr)) { # a numeric digit here indicates it's decimal formatting, meaning it's a decimal value
      dict$Decimal[[i]] <- as.numeric(xAttr)
      dict$dataType[[i]] <- "numeric"
    } else if (grepl("^A$", xAttr, ignore.case = TRUE)) { # the 'A' tells you it's alphanumeric/character value
      dict$Decimal[[i]] <- NA
      dict$dataType[[i]] <- "character"
    } else { # otherwise the default is integer
      dict$Decimal[[i]] <- 0
      dict$dataType[[i]] <- "integer"
    }

    i <- i + 1
  } # end for(var in dict$variableName)

  dict$Type <- rep("", times = length(dict$variableName)) # default
  dict$pvWt <- rep("", times = length(dict$variableName)) # default
  dict$weights <- rep(FALSE, times = length(dict$variableName)) # default value::to be calced later

  return(data.frame(dict, stringsAsFactors = FALSE))
}

getSPSS_PISA_YAFS_Part <- function(lines, startLineNo) {
  linePart <- lines[startLineNo:length(lines)]

  endPositions <- grepl("[.]$", linePart)
  endPos <- which(endPositions, arr.ind = TRUE)[1]

  return(linePart[1:endPos])
}

parseSPSS_PISA_YAFS_DataList <- function(lines) {
  dl <- list(
    variableName = character(0),
    Start = integer(0),
    End = integer(0),
    Width = integer(0),
    Attributes = character(0)
  )

  fullStr <- trimws(paste0(lines, collapse = " "), which = "both") # easier to work with one large string vs an array in this context

  argItems <- unlist(strsplit(fullStr, "/", fixed = TRUE)) # split by '/' character.  creates vector of 2 items.  first item is the function call; second item are the arguments
  valParts <- unlist(strsplit(trimws(argItems[2], which = "both"), " ", fixed = TRUE)) # get the function arguments and parse them into individual pieces
  valParts <- valParts[!(nchar(trimws(valParts, which = "both")) == 0)]

  varIdx <- which(grepl("^[A-z].*", valParts, ignore.case = TRUE), arr.ind = TRUE)

  vars <- tolower(valParts[varIdx])
  pos <- valParts[varIdx + 1]
  attr <- rep("", times = length(vars))

  # gather the attributes as applicable for the variable
  iPos <- 1 # need incremental index for assigning back to the 'attr' vector
  for (i in varIdx) {
    x <- i + 2 # attributes are 3rd agument after the variable name in the sequence. these are always contained in parenthesis: "(A)" or "(6)" for example

    if (x <= length(valParts)) {
      testVal <- valParts[x]

      if (grepl("^[(].*[)]", testVal)) {
        attr[iPos] <- grep("^[(].*[)]", testVal, value = TRUE) # only grabs the parenthesis and the value inside the parens
      }
    } else {
      attr[iPos] <- ""
    }

    iPos <- iPos + 1
  } # end for(i in varIdx)

  attr <- gsub(".", "", attr, fixed = TRUE) # remove any periods, only really applicable for the last item if next to the '.' terminator

  # clean up the start/end positions and calculate the width of the field
  sp <- rep(-1, times = length(vars))
  ep <- rep(-1, times = length(vars))

  posTemp <- strsplit(pos, "-", fixed = TRUE)

  for (i in seq_along(posTemp)) {
    if (length(posTemp[[i]]) > 1) {
      sp[i] <- as.numeric(posTemp[[i]][1])
      ep[i] <- as.numeric(posTemp[[i]][2])
    } else {
      sp[i] <- as.numeric(posTemp[[i]][1])
      ep[i] <- as.numeric(posTemp[[i]][1])
    }
  }

  # build the output list
  dl$variableName <- tolower(vars)
  dl$Start <- sp
  dl$End <- ep
  dl$Width <- (ep - sp) + 1
  dl$Attributes <- attr

  return(dl)
}

parseSPSS_PISA_YAFS_VariableLabels <- function(lines) {
  varLbl <- list(
    variableName = character(0),
    varDesc = character(0)
  )

  parts <- trimws(lines, which = "both")

  parts <- parts[!grepl("^VARIABLE LABELS", parts)]

  # splitting by the double-quote character of the line as each line is it's own variable
  subParts <- strsplit(parts, "\"", fixed = TRUE)
  vars <- rep("", times = length(subParts))
  desc <- rep("", times = length(subParts))

  for (i in seq_along(subParts)) {
    vars[i] <- tolower(trimws(subParts[[i]][1], which = "both"))
    desc[i] <- paste(trimws(subParts[[i]][-1], which = "both"), collapse = "")
  }

  # prep output
  varLbl$variableName <- vars
  varLbl$varDesc <- desc

  return(varLbl)
}

parseSPSS_PISA_YAFS_ValueLabels <- function(lines) {
  valLbl <- list(
    variableName = character(0),
    valLblDesc = character(0)
  )

  parts <- lines[!grepl("^VALUE LABELS", lines)]

  fullStr <- paste(parts, collapse = "|@*@|") # picked this delimiter as it's highly unlikely to be included as a value label or variable name

  subParts <- strsplit(fullStr, "   /") # the '/' character denotes a separate assignment definition item so split on that, must have three spaces before the '/'
  subParts <- subParts[[1]] # only on item, that will have 1 to n character vectors

  # need index for applying labels to the list as there can be multiple variables assigned to the same valueLabel definition
  iLbl <- 1

  for (i in seq_along(subParts)) {
    strVal <- subParts[i]
    strVal <- unlist(strsplit(strVal, "|@*@|", fixed = TRUE)) # resplit by this to get each line separately

    lblDefIdx <- which(grepl("\\d.*[\"].*[\"]", strVal), arr.ind = TRUE)

    lblDef <- strVal[lblDefIdx]
    varDef <- strVal[-lblDefIdx]

    varDef <- paste(trimws(varDef, which = "both"), collapse = " ") # merge all the lines together as one string
    varDef <- unlist(strsplit(varDef, " ", fixed = TRUE)) # split the joined string into each token
    varDef <- varDef[!(nchar(varDef) == 0)] # remove any empty tokens; only the var names remain

    lblDef <- strsplit(lblDef, "\"", fixed = TRUE)

    val <- rep(-1, times = length(lblDef))
    txt <- rep("", times = length(lblDef))

    testVal <- trimws(lblDef[[1]][1], which = "both") # check the first element of the lblDef to see if the value argument has a value or is empty.  empty signifies it's a character value
    if (nchar(testVal) > 0 && grepl("^[0-9]*$", testVal, ignore.case = TRUE)) {
      for (j in seq_along(lblDef)) {
        val[j] <- as.numeric(trimws(lblDef[[j]][1]))
        txt[j] <- trimws(paste(lblDef[[j]][-1], sep = "", collapse = ""))
      }
    } else {
      for (j in seq_along(lblDef)) {
        lblDef[[j]] <- lblDef[[j]][!(nchar(trimws(lblDef[[j]])) == 0)] # remove any empty tokens

        val[j] <- trimws(lblDef[[j]][1])
        txt[j] <- trimws(paste(lblDef[[j]][-1], sep = "", collapse = ""))
      } # end for(j in seq_along(lblDef)
    } # end else if(nchar(testVal)>0 && grepl("^[0-9]*$",testVal,ignore.case = TRUE))

    # loop through all the item variables and paste in the valueLabel definition to flatten it
    for (xVar in varDef) {
      valLbl$variableName[[iLbl]] <- tolower(xVar)
      valLbl$valLblDesc[[iLbl]] <- paste(val, txt, sep = "=", collapse = "^")

      iLbl <- iLbl + 1 # increment the label index
    }
  } # end if(nchar(testVal)>0 && grepl("^[0-9]*$",testVal,ignore.case = TRUE))


  return(valLbl)
}

Try the EdSurvey package in your browser

Any scripts or data that you put into this service are public.

EdSurvey documentation built on June 27, 2024, 5:10 p.m.