Nothing
elnormMultiplyCensored <-
function (x, censored, method = "mle", censoring.side = "left",
ci = FALSE, ci.method = "profile.likelihood", ci.type = "two-sided",
conf.level = 0.95, n.bootstraps = 1000, pivot.statistic = "z",
nmc = 1000, seed = NULL, ...)
{
if (!is.vector(x, mode = "numeric"))
stop("'x' must be a numeric vector")
if (!is.vector(censored, mode = "numeric") && !is.vector(censored,
mode = "logical"))
stop("'censored' must be a logical or numeric vector")
if (length(censored) != length(x))
stop("'censored' must be the same length as 'x'")
data.name <- deparse(substitute(x))
censoring.name <- deparse(substitute(censored))
if ((bad.obs <- sum(!(ok <- is.finite(x) & is.finite(as.numeric(censored))))) >
0) {
x <- x[ok]
censored <- censored[ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' and 'censored' removed."))
}
if (is.numeric(censored)) {
if (!all(censored == 0 | censored == 1))
stop(paste("When 'censored' is a numeric vector, all values of",
"'censored' must be 0 (not censored) or 1 (censored)."))
censored <- as.logical(censored)
}
if (any(x <= 0))
stop("All values of 'x' (including censored ones) must be positive")
n.cen <- sum(censored)
if (n.cen == 0)
stop("No censored values indicated by 'censored'.")
x.no.cen <- x[!censored]
if (length(unique(x.no.cen)) < 2)
stop("'x' must contain at least 2 non-missing, uncensored, distinct values.")
N <- length(x)
method <- match.arg(method, c("mle", "ROS", "qq.reg", "rROS",
"impute.w.qq.reg", "half.cen.level"))
if (method == "ROS")
method <- "qq.reg"
if (method == "rROS")
method <- "impute.w.qq.reg"
censoring.side <- match.arg(censoring.side, c("left", "right"))
if (method == "half.cen.level" && censoring.side == "right")
stop(paste("The method 'half.cen.level' is applicable only for",
"left-censored data with positive censoring levels"))
ci.method <- match.arg(ci.method, c("normal.approx", "bootstrap",
"profile.likelihood", "gpq"))
ci.type <- match.arg(ci.type, c("two-sided", "lower", "upper"))
if (ci && ci.method == "profile.likelihood" && method !=
"mle")
stop("When ci.method=\"profile.likelihood\" you must set method=\"mle\"")
pivot.statistic <- match.arg(pivot.statistic, c("z", "t"))
x.cen <- x[censored]
cen.levels <- sort(unique(x.cen))
ret.list <- enormMultiplyCensored(x = log(x), censored = censored,
method = method, censoring.side = censoring.side, ci = ci,
ci.method = ci.method, ci.type = ci.type, conf.level = conf.level,
n.bootstraps = n.bootstraps, pivot.statistic = pivot.statistic,
nmc = nmc, seed = seed, ...)
ret.list$distribution <- "Lognormal"
ret.list$censoring.levels <- cen.levels
names(ret.list$parameters) <- c("meanlog", "sdlog")
ret.list$data.name <- data.name
ret.list$censoring.name <- censoring.name
if (!is.null(ret.list$interval))
ret.list$interval$parameter <- "meanlog"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.