Nothing
loglike.norm.boxcoxSinglyCensored <-
function (x, censored, censoring.side, lambda, mean, sd, eps = .Machine$double.eps)
{
if (!is.vector(x, mode = "numeric"))
stop("'x' must be a numeric vector")
if (!(is.vector(censored, mode = "numeric") || is.vector(censored,
mode = "logical")))
stop("'censored' must be a logical or numeric vector")
if (length(censored) != length(x))
stop("'censored' must be the same length as 'x'")
if (any(is.na(censored)))
stop("'censored' cannot contain missing values")
if (is.numeric(censored)) {
if (!all(censored == 0 | censored == 1))
stop(paste("When 'censored' is a numeric vector, all values of",
"'censored' must be 0 (not censored) or 1 (censored)."))
censored <- as.logical(censored)
}
n.cen <- sum(censored)
if (n.cen == 0)
stop("No censored values indicated by 'censored'.")
censoring.side <- match.arg(censoring.side, c("left", "right"))
if (!is.vector(lambda, mode = "numeric") || length(lambda) !=
1 || !is.finite(lambda))
stop("'lambda' must be a non-missing, finite numeric scalar")
if (!is.vector(mean, mode = "numeric") || length(mean) !=
1 || !is.finite(mean))
stop("'mean' must be a non-missing, finite numeric scalar")
if (!is.vector(sd, mode = "numeric") || length(sd) != 1 ||
!is.finite(sd) || sd < 0)
stop("'sd' must be a non-missing, finite, positive numeric scalar")
data.name <- deparse(substitute(x))
censoring.name <- deparse(substitute(censored))
if (any(is.na(x))) {
statistic <- NA
}
else {
if (any(x <= 0))
stop("All values of 'x' must be positive")
x.no.cen <- x[!censored]
if (length(unique(x.no.cen)) < 2)
stop(paste("'x' must contain at least 2 non-missing,",
"uncensored, distinct values."))
T1 <- unique(x[censored])
if (length(T1) > 1)
stop(paste("More than one censoring level. ", "Use 'loglike.norm.boxcoxMultiplyCensored'."))
if (censoring.side == "left") {
if (T1 > min(x.no.cen))
stop(paste("For singly left-censored data,",
"all uncensored observations must be bigger than",
"or equal to the censoring level. ", "Use 'loglike.norm.boxcoxMultiplyCensored'."))
}
else {
if (T1 < max(x.no.cen))
stop(paste("For singly right-censored data,",
"all uncensored observations must be less than",
"or equal to the censoring level. ", "Use 'loglike.norm.boxcoxMultiplyCensored'."))
}
N <- length(x)
y <- boxcoxTransform(x = x, lambda = lambda, eps = eps)
statistic <- loglike.norm.singly.censored(x = y, censored = censored,
censoring.side = censoring.side, mean = mean, sd = sd)$statistic +
(lambda - 1) * sum(log(x.no.cen))
}
statistic
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.