Nothing
predIntLnorm <-
function (x, n.geomean = 1, k = 1, method = "Bonferroni", pi.type = "two-sided",
conf.level = 0.95)
{
if (!is.vector(k, mode = "numeric") || length(k) != 1 ||
!is.vector(n.geomean, mode = "numeric") || length(n.geomean) !=
1 || !is.vector(conf.level, mode = "numeric") || length(conf.level) !=
1)
stop("'k', 'n.geomean', and 'conf.level' must be numeric scalars")
if (k != trunc(k) || k < 1)
stop("'k' must be an integer greater than 0")
if (n.geomean != trunc(n.geomean) || n.geomean < 1)
stop("'n.geomean' must be an integer greater than 0")
if (conf.level <= 0 || conf.level >= 1)
stop("'conf.level' must be greater than 0 and less than 1.")
method <- match.arg(method, c("Bonferroni", "exact"))
pi.type <- match.arg(pi.type, c("two-sided", "lower", "upper"))
if (data.class(x) == "estimate" || data.class(x) == "estimateCensored") {
if (x$distribution != "Lognormal")
stop(paste("'predIntLnorm' creates prediction intervals",
"for a lognormal distribution. You have supplied an object",
"that assumes a different distribution."))
if (names(x$parameters[1]) == "mean")
stop(paste("You have suppled an object resulting from a call",
"to a function whose name begins with 'elnormAlt',",
"not 'elnorm'."))
if (!is.null(x$interval)) {
class.x <- oldClass(x)
x <- x[-match("interval", names(x))]
oldClass(x) <- class.x
}
new.x <- x
names(new.x$parameters) <- c("mean", "sd")
new.x$distribution <- "Normal"
ret.list <- predIntNorm(new.x, n.mean = n.geomean, k = k,
method = method, pi.type = pi.type, conf.level = conf.level)
ret.list$parameters <- x$parameters
}
else {
if (!is.vector(x, mode = "numeric"))
stop(paste("'x' must be either a list that inherits from",
"the class 'estimate', or else a numeric vector"))
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
if (any(x <= 0))
stop("All non-missing values of 'x' must be positive")
n <- length(x)
if (n < 2 || length(unique(x)) < 2)
stop(paste("'x' must contain at least 2 non-missing distinct values. ",
"This is not true for 'x' =", data.name))
ret.list <- predIntNorm(log(x), n.mean = n.geomean, k = k,
method = method, pi.type = pi.type, conf.level = conf.level)
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
names(ret.list$parameters) <- c("meanlog", "sdlog")
}
names(ret.list$interval)[names(ret.list$interval) == "n.mean"] <- "n.geomean"
ret.list$distribution <- "Lognormal"
ret.list$interval$limits <- exp(ret.list$interval$limits)
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.