Nothing
predIntLnormSimultaneous <-
function (x, n.geomean = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = .Machine$double.eps^0.5)
{
rule <- match.arg(rule, c("k.of.m", "CA", "Modified.CA"))
pi.type <- match.arg(pi.type, c("upper", "lower", "two-sided"))
switch(rule, k.of.m = {
if (!is.vector(n.geomean, mode = "numeric") || length(n.geomean) !=
1 || n.geomean != trunc(n.geomean) || n.geomean <
1 || !is.vector(k, mode = "numeric") || length(k) !=
1 || k != trunc(k) || k < 1 || !is.vector(m, mode = "numeric") ||
length(m) != 1 || m != trunc(m) || m < 1 || !is.vector(r,
mode = "numeric") || length(r) != 1 || r != trunc(r) ||
r < 1 || k > m) stop(paste("'n.geomean', 'k', 'm', and 'r' must be positive integers,",
"and 'k' must be between 1 and 'm'"))
}, CA = {
if (!is.vector(n.geomean, mode = "numeric") || length(n.geomean) !=
1 || n.geomean != trunc(n.geomean) || n.geomean <
1 || !is.vector(m, mode = "numeric") || length(m) !=
1 || m != trunc(m) || m < 1 || !is.vector(r, mode = "numeric") ||
length(r) != 1 || r != trunc(r) || r < 1) stop("'n.geomean', 'm', and 'r' must be positive integers")
}, Modified.CA = {
if (!is.vector(n.geomean, mode = "numeric") || length(n.geomean) !=
1 || n.geomean != trunc(n.geomean) || n.geomean <
1 || !is.vector(m, mode = "numeric") || length(m) !=
1 || m != trunc(m) || m < 1 || !is.vector(r, mode = "numeric") ||
length(r) != 1 || r != trunc(r) || r < 1) stop("'n.geomean', 'm', and 'r' must be positive integers")
m <- 4
})
if (!is.vector(delta.over.sigma, mode = "numeric") || length(delta.over.sigma) !=
1 || !is.finite(delta.over.sigma))
stop("'delta.over.sigma' must be a finite numeric scalar.")
if (!is.vector(conf.level, mode = "numeric") || length(conf.level) !=
1 || conf.level <= 0 || conf.level >= 1)
stop("'conf.level' must be a scalar greater than 0 and less than 1.")
if (x.is.est.obj <- data.class(x) == "estimate" || data.class(x) ==
"estimateCensored") {
if (x$distribution != "Lognormal")
stop(paste("'predIntLnormSimultaneous' creates prediction intervals",
"for a Lognormal distribution. You have supplied an object",
"that assumes a different distribution."))
if (names(x$parameters[1]) == "mean")
stop(paste("You have suppled an object resulting from a call",
"to a function whose name begins with 'elnormAlt',",
"not 'elnorm'."))
if (!is.null(x$interval)) {
class.x <- oldClass(x)
x <- x[-match("interval", names(x))]
oldClass(x) <- class.x
}
new.x <- x
names(new.x$parameters) <- c("mean", "sd")
new.x$distribution <- "Normal"
ret.list <- predIntNormSimultaneous(new.x, n.mean = n.geomean,
k = k, m = m, r = r, rule = rule, delta.over.sigma = delta.over.sigma,
pi.type = pi.type, conf.level = conf.level, K.tol = K.tol)
ret.list$parameters <- x$parameters
}
else {
if (!is.vector(x, mode = "numeric"))
stop(paste("'x' must be either a list that inherits from",
"the class 'estimate', or else a numeric vector"))
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
if (any(x <= 0))
stop("All non-missing values of 'x' must be positive")
n <- length(x)
if (n < 2 || length(unique(x)) < 2)
stop(paste("'x' must contain at least 2 non-missing distinct values. ",
"This is not true for 'x' =", data.name))
ret.list <- predIntNormSimultaneous(log(x), n.mean = n.geomean,
k = k, m = m, r = r, rule = rule, delta.over.sigma = delta.over.sigma,
pi.type = pi.type, conf.level = conf.level, K.tol = K.tol)
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
names(ret.list$parameters) <- c("meanlog", "sdlog")
}
names(ret.list$interval)[names(ret.list$interval) == "n.mean"] <- "n.geomean"
ret.list$distribution <- "Lognormal"
ret.list$interval$limits <- exp(ret.list$interval$limits)
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.