Nothing
tolIntGamma <-
function (x, coverage = 0.95, cov.type = "content", ti.type = "two-sided",
conf.level = 0.95, method = "exact", est.method = "mle",
normal.approx.transform = "kulkarni.powar")
{
if (any(is.na(coverage)))
stop("Missing values not allowed in 'coverage'.")
if (!is.numeric(coverage) || length(coverage) > 1 || coverage <=
0 || coverage >= 1)
stop("'coverage' must be a scalar greater than 0 and less than 1.")
cov.type <- match.arg(cov.type, c("content", "expectation"))
ti.type <- match.arg(ti.type, c("two-sided", "lower", "upper"))
method <- match.arg(method, c("exact", "wald.wolfowitz"))
est.method <- match.arg(est.method, c("mle", "bcmle", "mme",
"mmue"))
normal.approx.transform <- match.arg(normal.approx.transform,
c("kulkarni.powar", "cube.root", "fourth.root"))
if (!is.numeric(conf.level) || length(conf.level) > 1 ||
conf.level <= 0 || conf.level >= 1)
stop("'conf.level' must be a scalar greater than 0 and less than 1.")
if (!is.vector(x, mode = "numeric"))
stop("'x' must be a numeric vector")
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
if (any(x < 0))
stop("All non-missing values of 'x' must be non-negative")
n <- length(x)
if (n < 2 || length(unique(x)) < 2)
stop(paste("'x' must contain at least 2 non-missing distinct values. ",
"This is not true for 'x' =", data.name))
dum.list <- egamma(x = x, method = est.method)
switch(normal.approx.transform, kulkarni.powar = {
shape <- dum.list$parameters["shape"]
p <- ifelse(shape > 1.5, 0.246, -0.0705 - 0.178 * shape +
0.475 * sqrt(shape))
string <- paste("Kulkarni & Powar (2010)\n", space(33),
"transformation to Normality\n", space(33), "based on ",
dum.list$method, " of 'shape'", sep = "")
}, cube.root = {
p <- 1/3
string <- paste("Wilson & Hilferty (1931) cube-root\n",
space(33), "transformation to Normality", sep = "")
}, fourth.root = {
p <- 1/4
string <- paste("Hawkins & Wixley (1986) fourth-root\n",
space(33), "transformation to Normality", sep = "")
})
names(p) <- NULL
Y <- x^p
ret.list <- tolIntNorm(Y, coverage = coverage, cov.type = cov.type,
ti.type = ti.type, conf.level = conf.level, method = method)
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
ret.list$parameters <- dum.list$parameters
ret.list$method <- dum.list$method
ret.list$distribution <- "Gamma"
ret.list$interval$method <- paste(ret.list$interval$method,
" using\n", space(33), string, sep = "")
limits <- ret.list$interval$limits
if (ti.type == "upper")
limits["LTL"] <- 0
if (ti.type %in% c("two-sided", "lower") & limits["LTL"] <
0) {
limits["LTL"] <- 0
warning("Normal approximation not accurate for this case")
}
ret.list$interval$limits <- limits^(1/p)
ret.list$interval$normal.transform.power <- p
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.