Nothing
#####
# File: Script - EPA09, Chapter 19 Examples.R
#
# Purpose: Reproduce Examples in Chapter 19 of the EPA Guidance Document
#
# USEPA. (2009). "Statistical Analysis of Ground Water
# Monitoring Data at RCRA Facilities, Unified Guidance."
# EPA 530-R-09-007.
# Office of Resource Conservation and Recovery,
# Program Information and Implementation Division.
# March 2009.
#
# Errata are listed in:
# USEPA. (2010). "Errata Sheet - March 2009 Unified Guidance."
# EPA 530/R-09-007a.
# Office of Resource Conservation and Recovery,
# Program Information and Implementation Division.
# August 9, 2010.
#
# Author: Steven P. Millard
#
# Last
# Updated: October 3, 2012
#####
#NOTE: Unless otherwise noted, differences between what is shown in the
# EPA Guidance Document and results shown here are due to the
# EPA Guidance Document rounding intermediate results prior to
# the final result.
#######################################################################################
library(EnvStats)
# Example 19-1, pp. 19-17 to 19-18
#---------------------------------
names(EPA.09.Ex.19.1.sulfate.df)
#[1] "Well" "Month" "Day"
#[4] "Year" "Date" "Sulfate.mg.per.l"
#[7] "log.Sulfate.mg.per.l"
EPA.09.Ex.19.1.sulfate.df[, c("Well", "Date", "Sulfate.mg.per.l", "log.Sulfate.mg.per.l")]
# Well Date Sulfate.mg.per.l log.Sulfate.mg.per.l
#1 GW-01 1999-07-08 63.0 4.143135
#2 GW-01 1999-09-12 51.0 3.931826
#3 GW-01 1999-10-16 60.0 4.094345
#4 GW-01 1999-11-02 86.0 4.454347
#5 GW-04 1999-07-09 104.0 4.644391
#6 GW-04 1999-09-14 102.0 4.624973
#7 GW-04 1999-10-12 84.0 4.430817
#8 GW-04 1999-11-15 72.0 4.276666
#9 GW-08 1997-10-12 31.0 3.433987
#10 GW-08 1997-11-16 84.0 4.430817
#11 GW-08 1998-01-28 65.0 4.174387
#12 GW-08 1999-04-20 41.0 3.713572
#13 GW-08 2002-06-04 51.8 3.947390
#14 GW-08 2002-09-16 57.5 4.051785
#15 GW-08 2002-12-02 66.8 4.201703
#16 GW-08 2003-03-24 87.1 4.467057
#17 GW-09 1997-10-16 59.0 4.077537
#18 GW-09 1998-01-28 85.0 4.442651
#19 GW-09 1998-04-12 75.0 4.317488
#20 GW-09 1998-07-12 99.0 4.595120
#21 GW-09 2000-01-30 75.8 4.328098
#22 GW-09 2000-04-24 82.5 4.412798
#23 GW-09 2000-10-24 85.5 4.448516
#24 GW-09 2002-12-01 188.0 5.236442
#25 GW-09 2003-03-24 150.0 5.010635
# Summary statistics for raw data
#--------------------------------
summaryStats(Sulfate.mg.per.l ~ 1,
data = EPA.09.Ex.19.1.sulfate.df,
digits = 2)
# N Mean SD Median Min Max
#Sulfate.mg.per.l 25 80.24 32.83 75.8 31 188
# Step 1: Shapiro-Wilk Test on Background Data
#----------------------------------------------
gof.list <- gofTest(Sulfate.mg.per.l ~ 1,
data = EPA.09.Ex.19.1.sulfate.df)
gof.list
#
#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Normal
#
#Estimated Parameter(s): mean = 80.24000
# sd = 32.82773
#
#Estimation Method: mvue
#
#Data: Sulfate.mg.per.l
#
#Data Source: EPA.09.Ex.19.1.sulfate.df
#
#Sample Size: 25
#
#Test Statistic: W = 0.8523182
#
#Test Statistic Parameter: n = 25
#
#P-value: 0.001949635
#
#Alternative Hypothesis: True cdf does not equal the
# Normal Distribution.
windows()
plot(gof.list)
# Try Lognormal transformation
gof.list.lnorm <- gofTest(Sulfate.mg.per.l ~ 1,
data = EPA.09.Ex.19.1.sulfate.df,
dist = "lnorm")
gof.list.lnorm
#
#Results of Goodness-of-Fit Test
#-------------------------------
#
#Test Method: Shapiro-Wilk GOF
#
#Hypothesized Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 4.3156194
# sdlog = 0.3756697
#
#Estimation Method: mvue
#
#Data: Sulfate.mg.per.l
#
#Data Source: EPA.09.Ex.19.1.sulfate.df
#
#Sample Size: 25
#
#Test Statistic: W = 0.9654866
#
#Test Statistic Parameter: n = 25
#
#P-value: 0.5340842
#
#Alternative Hypothesis: True cdf does not equal the
# Lognormal Distribution.
windows()
plot(gof.list.lnorm)
# Steps 2 and 3 - Determine Power for 1-of-2 and 1-of-3 retest designs assuming:
# 25 Background Measures,
# 10 Constituents,
# 50 Wells,
# 2 Evaluations per year, and
# Site Wide False Positive Rate (SWFPR) of 10%
#------------------------------------------------------------------------------
n <- 25
nc <- 10
nw <- 50
# Set r = Number of Evaluations per year = 2
r <- 2
# Set Individual Test Type I Error to
# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
#
# which translates to setting the confidence limit to
# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.9997893
windows()
par(mar = c(5,4,6,1) + 0.1)
plotPredIntNormSimultaneousTestPowerCurve(n = n, k = 1, m = 3,
r = r, rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
xlab = "SD Units Above Background",
main = "")
plotPredIntNormSimultaneousTestPowerCurve(n = n, k = 1, m = 2,
r = r, rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 2, plot.lty = 2)
legend(0, 1, c("1-of-3", "1-of-2"), col = 1:2, lty = 1:2, lwd = 2, bty="n")
mtext(paste('Power of 1-of-2 and 1-of-3 Retest Designs to Detect An Increase',
"\nAt", nw, "Wells for SWFPR = 10%"), line = 3, cex = 1.25)
mtext(paste("(Adjusted for", nc, "Consituents and", r, "Evaluations per Year)"), line = 1)
# Multiplier for 1-of-2 Retest Design
predIntNormSimultaneousK(n = n, k = 1, m = 2,
r = r, rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)
#[1] 2.773504
# Multiplier for 1-of-3 Retest Design
predIntNormSimultaneousK(n = n, k = 1, m = 3,
r = r, rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)
#[1] 2.014364
# Step 4 - Compute upper prediction limit using 1-of-3 design
# and assuming observations are lognormally distributed
#---------------------------------------------------------------
Sulfate <- EPA.09.Ex.19.1.sulfate.df$Sulfate.mg.per.l
pred.int.list <-
predIntLnormSimultaneous(x = Sulfate,
k = 1, m = 3, r = r,
rule = "k.of.m", pi.type = "upper",
conf.level = conf.level)
pred.int.list
#
#Results of Distribution Parameter Estimation
#--------------------------------------------
#
#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = 4.3156194
# sdlog = 0.3756697
#
#Estimation Method: mvue
#
#Data: Sulfate
#
#Sample Size: 25
#
#Prediction Interval Method: exact
#
#Prediction Interval Type: upper
#
#Confidence Level: 99.97893%
#
#Minimum Number of
#Future Observations
#Interval Should Contain
#(per Sampling Occasion): 1
#
#Total Number of
#Future Observations
#(per Sampling Occasion): 3
#
#Number of Future
#Sampling Occasions: 100
#
#Prediction Interval: LPL = 0.0000
# UPL = 159.5496
names(pred.int.list)
#[1] "distribution" "sample.size" "parameters" "n.param.est"
#[5] "method" "data.name" "bad.obs" "interval"
pred.int.list$interval$limits["UPL"]
# UPL
#159.5496
# NOTE: The upper prediction limit is on the scale of the original data,
# *NOT* the log-transformed scale.
rm(Sulfate, gof.list, gof.list.lnorm, n, nc, nw, r, conf.level, pred.int.list)
#######################################################################################
# Example 19-2, pp. 19-18 to 19-20
#---------------------------------
# Raw data and summary statistics
#--------------------------------
head(EPA.09.Ex.19.2.chloride.df)
# Well Chloride.mg.per.l
#1 GW-09 22.0
#2 GW-09 18.4
#3 GW-09 39.9
#4 GW-09 33.7
#5 GW-12 78.0
#6 GW-12 70.0
EPA.mat <- with(EPA.09.Ex.19.2.chloride.df,
sapply(split(Chloride.mg.per.l, Well), I))
EPA.mat
# GW-09 GW-12 GW-13 GW-14 GW-15 GW-16 GW-24 GW-25 GW-26 GW-28
#[1,] 22.0 78.0 75.1 59.2 35.0 31.0 23.4 33.5 79.8 37.7
#[2,] 18.4 70.0 65.6 57.1 56.8 34.6 36.4 30.2 61.3 26.6
#[3,] 39.9 61.0 67.0 41.1 69.8 60.1 31.1 23.1 57.8 45.7
#[4,] 33.7 65.8 55.3 47.7 41.3 48.7 45.0 38.7 44.8 42.0
summaryStats(Chloride.mg.per.l ~ Well,
data = EPA.09.Ex.19.2.chloride.df,
digits = 3, stats.in.rows = TRUE)
# GW-09 GW-12 GW-13 GW-14 GW-15 GW-16 GW-24 GW-25 GW-26 GW-28
#N 4 4 4 4 4 4 4 4 4 4
#Mean 28.5 68.7 65.75 51.275 50.725 43.6 33.975 31.375 60.925 38
#SD 10.021 7.208 8.128 8.427 15.672 13.392 9.083 6.533 14.447 8.273
#Median 27.85 67.9 66.3 52.4 49.05 41.65 33.75 31.85 59.55 39.85
#Min 18.4 61 55.3 41.1 35 31 23.4 23.1 44.8 26.6
#Max 39.9 78 75.1 59.2 69.8 60.1 45 38.7 79.8 45.7
# Step 1 - Determine Power for Modified CA retest design assuming:
# 4 Background measures per Well,
# 5 Constituents,
# 10 Wells,
# 1 Evaluation per year, and
# Site Wide False Positive Rate (SWFPR) of 10%
#--------------------------------------------------------
n <- 4
nc <- 5
nw <- 10
# Set r = Number of Evaluations per year = 1
r <- 1
# Set Individual Test Type I Error to
# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
#
# which translates to setting the confidence limit to
# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.997895
windows()
par(mar = c(5,4,6,1) + 0.1)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
r = r, rule="Modified.CA", pi.type = "upper",
conf.level = conf.level,
ylim = c(0, 1),
xlab = "SD Units Above Background",
main = "")
mtext(paste('Power of Modified CA Retest Design to Detect An Increase',
"\nAt", nw, "Wells for SWFPR = 10%"), line = 3, cex = 1.25)
mtext(paste("(Based on", n, "Background Observations per Well and\nAdjusted for",
nc, "Consituents and", r, "Evaluation per year)"), line = 0.5)
# Multiplier for Modified CA Retest Design
predIntNormSimultaneousK(n = n, r = r, rule = "Modified.CA",
pi.type = "upper", conf.level = conf.level)
#[1] 4.356389
# Step 2 - Look at variability for each well
#-------------------------------------------
windows()
stripChart(Chloride.mg.per.l ~ Well,
data = EPA.09.Ex.19.2.chloride.df,
ci.offset = 1, ylim = c(0, 100),
xlab = "Well", ylab = "Chloride (mg/l)",
location.scale.text.cex = 0.6,
cex.axis = 0.85, n.text.cex = 0.85)
mtext("Chloride by Well with 95% CI's", line = 2.5, cex = 1.25, font = 2)
# Use Levene's test to test for difference in variances between wells
#--------------------------------------------------------------------
varGroupTest(Chloride.mg.per.l ~ Well,
data = EPA.09.Ex.19.2.chloride.df)
#
#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Ratio of each pair of variances = 1
#
#Alternative Hypothesis: At least one variance differs
#
#Test Name: Levene's Test for
# Homogenity of Variance
#
#Estimated Parameter(s): GW-09 = 100.42000
# GW-12 = 51.96000
# GW-13 = 66.07000
# GW-14 = 71.01583
# GW-15 = 245.62250
# GW-16 = 179.34000
# GW-24 = 82.50917
# GW-25 = 42.67583
# GW-26 = 208.72917
# GW-28 = 68.44667
#
#Data: Chloride.mg.per.l
#
#Grouping Variable: Well
#
#Data Source: EPA.09.Ex.19.2.chloride.df
#
#Sample Sizes: GW-09 = 4
# GW-12 = 4
# GW-13 = 4
# GW-14 = 4
# GW-15 = 4
# GW-16 = 4
# GW-24 = 4
# GW-25 = 4
# GW-26 = 4
# GW-28 = 4
#
#Test Statistic: F = 1.067300
#
#Test Statistic Parameters: num df = 9
# denom df = 30
#
#P-value: 0.4139585
# Step 3 - One-Way ANOVA to Compute Pooled SD Estimate
#-----------------------------------------------------
aov.fit <- aov(Chloride.mg.per.l ~ Well,
data = EPA.09.Ex.19.2.chloride.df)
anova.aov.fit <- anova(aov.fit)
anova.aov.fit
# Df Sum Sq Mean Sq F value Pr(>F)
#Well 9 7585.3 842.81 7.5467 1.099e-05 ***
#Residuals 30 3350.4 111.68
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sp <- sqrt(anova.aov.fit["Residuals", "Mean Sq"])
df <- anova.aov.fit["Residuals", "Df"]
c(Sp, df)
#[1] 10.56782 30.00000
# Compare power of Modified CA retest design based on using
# 4 background samples at each well
# resulting in an estimate of SD with
# 3 degrees of freedom at each well
#
# versus
#
# pooling estimates of SD from all 10 wells in order to
# use an estimate of SD based on 30 degrees of freedom
windows()
par(mar = c(5,4,6,1) + 0.1)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
r = r, rule="Modified.CA", pi.type = "upper",
conf.level = conf.level,
ylim = c(0, 1),
xlab = "SD Units Above Background",
main = "")
plotPredIntNormSimultaneousTestPowerCurve(n = n,
df = df, r = r, rule="Modified.CA",
pi.type = "upper", conf.level = conf.level,
plot.col = 2, plot.lty = 2, add = T)
legend(0, 1, c("Pooled Well SD (30 df)", "Individual Well SD (3 df)"),
col = 2:1, lty = 2:1, lwd = 2, bty = 'n')
mtext(paste('Power of Modified CA Retest Design to Detect An Increase',
"\nAt", nw, "Wells for SWFPR = 10%"), line = 3, cex = 1.25)
mtext(paste("(Based on", n, "Background Observations per Well and\nAdjusted for",
nc, "Consituents and", r, "Evaluation per year)"), line = 0.5)
# Step 4 - Compute K-multiplier based on using pooled estimate of SD
#-------------------------------------------------------------------
K <- predIntNormSimultaneousK(n = n, df = df, r = r,
rule = "Modified.CA", pi.type = "upper",
conf.level = conf.level)
K
#[1] 1.980025
# Compute upper prediction limits for each well:
Means <- colMeans(EPA.mat)
Means
# GW-09 GW-12 GW-13 GW-14 GW-15 GW-16 GW-24 GW-25 GW-26 GW-28
#28.500 68.700 65.750 51.275 50.725 43.600 33.975 31.375 60.925 38.000
UPLs <- Means + K * Sp
round(UPLs, 1)
#GW-09 GW-12 GW-13 GW-14 GW-15 GW-16 GW-24 GW-25 GW-26 GW-28
# 49.4 89.6 86.7 72.2 71.6 64.5 54.9 52.3 81.8 58.9
rm(EPA.mat, n, nc, nw, r, conf.level, aov.fit, anova.aov.fit,
Sp, df, K, Means, UPLs)
#####################################################################################################
# Example 19-3, pp. 19-23 to 19-24
#---------------------------------
# Determine Power for:
# 1-of-2, 1-of-3, 1-of-4, Modified CA designs based on single future observations
# 1-of-1, 1-of-2 designs based on mean of 2 future observations
# 1-of-1 design based on mean of 3 future observations
#
# assuming:
# 25 Background Measures,
# 20 Constituents,
# 100 Wells,
# 2 Evaluations per year, and
# Site Wide False Positive Rate (SWFPR) of 10%
#------------------------------------------------------------------------------
n <- 25
nc <- 20
nw <- 100
# Set r = Number of Evaluations per year = 2
r <- 2
# Set Individual Test Type I Error to
# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
#
# which translates to setting the confidence limit to
# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.9999473
# Power for designs based on SINGLE future observations
#------------------------------------------------------
windows()
par(mar = c(5,4,6,1) + 0.1)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
k = 1, m = 4, r = r, rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
xlab = "SD Units Above Background",
main = "")
plotPredIntNormSimultaneousTestPowerCurve(n = n,
k = 1, m = 3, r = r, rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 2, plot.lty = 2)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
k = 1, m = 2, r = r, rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 3, plot.lty = 3)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
r = r, rule="Modified.CA", pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 4, plot.lty = 4)
legend(0, 1, c("1-of-4", "Modified CA", "1-of-3", "1-of-2"),
col = c(1, 4, 2, 3), lty = c(1, 4, 2, 3), lwd = 2, bty="n")
mtext(paste('Power of 1-of-2, 1-of-3, 1-of-4, and Modified CA Designs to',
"\nDetect An Increase At", nw, "Wells for SWFPR = 10%"),
line = 3, cex = 1.25)
mtext(paste("(Based on", n, "Background Observations and\n",
"Adjusted for", nc, "Consituents and", r, "Evaluations per year)"),
line = 1)
# Power for designs based on the MEAN of future observations
#-----------------------------------------------------------
windows()
par(mar = c(5,4,6,1) + 0.1)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
k = 1, m = 2, n.mean = 2, r = r, rule="k.of.m",
pi.type = "upper", conf.level = conf.level,
xlab = "SD Units Above Background",
main = "")
plotPredIntNormSimultaneousTestPowerCurve(n = n,
k = 1, m = 1, n.mean = 2, r = r, rule="k.of.m",
pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 2, plot.lty = 2)
plotPredIntNormSimultaneousTestPowerCurve(n = n,
k = 1, m = 1, n.mean = 3, r = r, rule="k.of.m",
pi.type = "upper", conf.level = conf.level,
add = T, plot.col = 3, plot.lty = 3)
legend(0, 1, c("1-of-2, Order 2", "1-of-1, Order 3", "1-of-1, Order 2"),
col = c(1, 3, 2), lty = c(1, 3, 2), lwd = 2,
bty="n")
mtext(paste('Power of 1-of-1 and 1-of-2 Designs Based on Means to Detect',
"\nAn Increase At", nw, "Wells for SWFPR = 10%"),
line = 3, cex = 1.25)
mtext(paste("(Based on", n, "Background Observations and\n",
"Adjusted for", nc, "Consituents and", r, "Evaluations per Year)"),
line = 1)
# Create data.frame containing K-multipliers and
# Powers to detect an increase of 3 SDs above backgroud at all wells
#-------------------------------------------------------------------
rule.vec <- c(rep("k.of.m", 3), "Modified.CA", rep("k.of.m", 3))
m.vec <- c(2, 3, 4, 4, 1, 2, 1)
n.mean.vec <- c(rep(1, 4), 2, 2, 3)
n.scenarios <- length(rule.vec)
K.vec <- numeric(n.scenarios)
Power.vec <- numeric(n.scenarios)
for (i in 1:n.scenarios){
K.vec[i] <- predIntNormSimultaneousK(
n = n, k = 1, m = m.vec[i],
n.mean = n.mean.vec[i],
r = r, rule = rule.vec[i],
pi.type = "upper", conf.level = conf.level)
Power.vec[i] <- predIntNormSimultaneousTestPower(
n = n, k = 1, m = m.vec[i],
n.mean = n.mean.vec[i], r = r,
rule = rule.vec[i], delta.over.sigma = 3,
pi.type = "upper", conf.level = conf.level)
}
data.frame(Rule = rule.vec, k = rep(1, n.scenarios),
m = m.vec, N.Mean = n.mean.vec,
K = round(K.vec, 2),
Power = round(Power.vec, 2),
Total.Samples = c(2, 3, 4, 4, 2, 4, 3))
# Rule k m N.Mean K Power Total.Samples
#1 k.of.m 1 2 1 3.16 0.39 2
#2 k.of.m 1 3 1 2.33 0.65 3
#3 k.of.m 1 4 1 1.83 0.81 4
#4 Modified.CA 1 4 1 2.57 0.71 4
#5 k.of.m 1 1 2 3.62 0.41 2
#6 k.of.m 1 2 2 2.33 0.85 4
#7 k.of.m 1 1 3 2.99 0.71 3
#NOTE: The values of k and m have special meanings
# for the Modified CA rule.
rm(n, nc, nw, r, conf.level, rule.vec, m.vec, n.scenarios,
n.mean.vec, K.vec, Power.vec, i)
#######################################################################################
# Example 19-4, pp. 19-24 to 19-25
#---------------------------------
EPA.mat <- with(EPA.09.Ex.19.2.chloride.df,
sapply(split(Chloride.mg.per.l, Well), I))
EPA.mat
# GW-09 GW-12 GW-13 GW-14 GW-15 GW-16 GW-24 GW-25 GW-26 GW-28
#[1,] 22.0 78.0 75.1 59.2 35.0 31.0 23.4 33.5 79.8 37.7
#[2,] 18.4 70.0 65.6 57.1 56.8 34.6 36.4 30.2 61.3 26.6
#[3,] 39.9 61.0 67.0 41.1 69.8 60.1 31.1 23.1 57.8 45.7
#[4,] 33.7 65.8 55.3 47.7 41.3 48.7 45.0 38.7 44.8 42.0
# 4 Background measures per well,
# 5 Constituents
# 10 Wells
# 1 Evaluation per year
n <- 4
nc <- 5
nw <- 10
r <- 1
# Set Individual Test Type I Error to
# 1 - (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
#
# which translates to setting the confidence limit to
# (1 - SWFPR)^(1 / (Number of Constituents * Number of Wells))
conf.level <- (1 - 0.1)^(1 / (nc * nw))
conf.level
#[1] 0.997895
# Step 1 - One-Way ANOVA to Compute Pooled SD Estimate
#-----------------------------------------------------
aov.fit <- aov(Chloride.mg.per.l ~ Well,
data = EPA.09.Ex.19.2.chloride.df)
anova.aov.fit <- anova(aov.fit)
anova.aov.fit
# Df Sum Sq Mean Sq F value Pr(>F)
#Well 9 7585.3 842.81 7.5467 1.099e-05 ***
#Residuals 30 3350.4 111.68
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sp <- sqrt(anova.aov.fit["Residuals", "Mean Sq"])
df <- anova.aov.fit["Residuals", "Df"]
c(Sp, df)
#[1] 10.56782 30.00000
# Step 2 - Compute K-multiplier based on
# using pooled estimate of SD and
# 1-of-1, 1-of-2, and 1-of-3 plans using
# the mean of two future observations for
# each evaluation
#-------------------------------------------------
m.vec <- 1:3
K.vec <- numeric(3)
for(i in 1:3) {
K.vec[i] <- predIntNormSimultaneousK(
n = n, df = df, k = 1, m = m.vec[i],
n.mean = 2, r = r, rule = "k.of.m",
pi.type = "upper", conf.level = conf.level)
}
K.vec
#[1] 2.682613 1.875368 1.511350
# Compute upper prediction limits for each well:
Means <- colMeans(EPA.mat)
Means
# GW-09 GW-12 GW-13 GW-14 GW-15 GW-16 GW-24 GW-25 GW-26 GW-28
#28.500 68.700 65.750 51.275 50.725 43.600 33.975 31.375 60.925 38.000
n.Wells <- length(Means)
UPLs <- rep(Means, each = 3) + rep(K.vec, n.Wells) * Sp
data.frame(Well = names(UPLs),
Rule = rep(paste("1-of-", m.vec, sep=""), n.Wells),
K = rep(round(K.vec, 2), n.Wells),
Mean = round(Means, 2), UPL = round(UPLs, 2))
# Well Rule K Mean UPL
#1 GW-09 1-of-1 2.68 28.50 56.85
#2 GW-09 1-of-2 1.88 68.70 48.32
#3 GW-09 1-of-3 1.51 65.75 44.47
#4 GW-12 1-of-1 2.68 51.28 97.05
#5 GW-12 1-of-2 1.88 50.72 88.52
#6 GW-12 1-of-3 1.51 43.60 84.67
#7 GW-13 1-of-1 2.68 33.98 94.10
#8 GW-13 1-of-2 1.88 31.38 85.57
#9 GW-13 1-of-3 1.51 60.92 81.72
#10 GW-14 1-of-1 2.68 38.00 79.62
#11 GW-14 1-of-2 1.88 28.50 71.09
#12 GW-14 1-of-3 1.51 68.70 67.25
#13 GW-15 1-of-1 2.68 65.75 79.07
#14 GW-15 1-of-2 1.88 51.28 70.54
#15 GW-15 1-of-3 1.51 50.72 66.70
#16 GW-16 1-of-1 2.68 43.60 71.95
#17 GW-16 1-of-2 1.88 33.98 63.42
#18 GW-16 1-of-3 1.51 31.38 59.57
#19 GW-24 1-of-1 2.68 60.92 62.32
#20 GW-24 1-of-2 1.88 38.00 53.79
#21 GW-24 1-of-3 1.51 28.50 49.95
#22 GW-25 1-of-1 2.68 68.70 59.72
#23 GW-25 1-of-2 1.88 65.75 51.19
#24 GW-25 1-of-3 1.51 51.28 47.35
#25 GW-26 1-of-1 2.68 50.72 89.27
#26 GW-26 1-of-2 1.88 43.60 80.74
#27 GW-26 1-of-3 1.51 33.98 76.90
#28 GW-28 1-of-1 2.68 31.38 66.35
#29 GW-28 1-of-2 1.88 60.92 57.82
#30 GW-28 1-of-3 1.51 38.00 53.97
#Warning message:
#In data.frame(Well = names(UPLs), Rule = rep(paste("1-of-", m.vec, :
# row names were found from a short variable and have been discarded
# Step 3 - Figure 19-1
#---------------------
windows()
par(mar = c(5,4,6,1) + 0.1)
plotPredIntNormSimultaneousTestPowerCurve(
n = n, df = df, k = 1, m = 3, n.mean = 2, r = r,
rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
xlab = "SD Units Above Background",
main = "")
plotPredIntNormSimultaneousTestPowerCurve(
n = n, df = df, k = 1, m = 2, n.mean = 2, r = r,
rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 2, plot.lty = 2)
plotPredIntNormSimultaneousTestPowerCurve(
n = n, df =df, k = 1, m = 1, n.mean = 2, r = r,
rule="k.of.m", pi.type = "upper",
conf.level = conf.level,
add = T, plot.col = 3, plot.lty = 3)
legend(0, 1, c("1-of-3, Order 2", "1-of-2, Order 2", "1-of-1, Order 2"),
col = 1:3, lty = 1:3, lwd = 2, bty="n")
mtext(paste('Power of 1-of-1,2,3 Designs Based on Means to Detect',
"\nAn Increase At", nw, "Wells for SWFPR = 10%"),
line = 3, cex = 1.25)
mtext(paste("(Based on", n, "Background Observations with", df, "DoF and\n",
"Adjusted for", nc, "Consituents and", r, "Evaluation per Year)"),
line = 1)
rm(EPA.mat, n, r, conf.level, aov.fit, anova.aov.fit,
Sp, df, K.vec, Means, n.Wells, UPLs)
############################################################################
# Example 19-5, pp. 19-33 to 19-35
#---------------------------------
#-------------------
# Show original data
#-------------------
head(EPA.09.Ex.19.5.mercury.df)
# Event Well Well.type Mercury.ppb.orig Mercury.ppb Censored
#1 1 BG-1 Background 0.21 0.21 FALSE
#2 2 BG-1 Background <.2 0.20 TRUE
#3 3 BG-1 Background <.2 0.20 TRUE
#4 4 BG-1 Background <.2 0.20 TRUE
#5 5 BG-1 Background <.2 0.20 TRUE
#6 6 BG-1 Background NA FALSE
longToWide(EPA.09.Ex.19.5.mercury.df, "Mercury.ppb.orig",
"Event", "Well", paste.row.name = TRUE)
# BG-1 BG-2 BG-3 BG-4 CW-1 CW-2
#Event.1 0.21 <.2 <.2 <.2 0.22 0.36
#Event.2 <.2 <.2 0.23 0.25 0.2 0.41
#Event.3 <.2 <.2 <.2 0.28 <.2 0.28
#Event.4 <.2 0.21 0.23 <.2 0.25 0.45
#Event.5 <.2 <.2 0.24 <.2 0.24 0.43
#Event.6 <.2 0.54
#-------------------------------------
# Compute per-constituent Type I error
#-------------------------------------
# n = 20 based on 4 Background Wells
# nw = 10 Compliance Wells
# nc = 5 Constituents
# ne = 1 Evaluation per year
n <- 20
nw <- 10
nc <- 5
ne <- 1
# Set number of future sampling occasions r to
# Number Compliance Wells x Number Evaluations per Year
r <- nw * ne
# Set Per-Constituent Type I Error to
# 1 - (1 - SWFPR)^(1 / Number of Constituents)
#
# which translates to setting the confidence limit to
# (1 - SWFPR)^(1 / Number of Constituents)
conf.level <- (1 - 0.1)^(1 / nc)
conf.level
#[1] 0.9791484
alpha <- 1 - conf.level
alpha
#[1] 0.02085164
#--------------------------------------------------
# Compute alpha levels for various resampling plans
#--------------------------------------------------
# Check alpha levels for the following retesting plans:
# 1) 1-of-2
# 2) 1-of-3
# 3) 1-of-4
# 4) Modified CA
# 5) 1-of-1 for median of 3 future values.
# This plan is equivalent to the 2-of-3 plan for single observations.
# 6) 1-of-2 for median of 3 future values.
rule.vec <- c(rep("k.of.m", 3), "Modified.CA", rep("k.of.m", 2))
k.vec <- rep(1, 6)
m.vec <- c(2:4, 4, 1, 2)
n.median.vec <- c(rep(1, 4), rep(3, 2))
n.plans <- length(rule.vec)
# Alpha-levels based on using Maximum background observation
alpha.vec.Max <- numeric(n.plans)
for(i in 1:n.plans)
alpha.vec.Max[i] <- 1 -
predIntNparSimultaneousConfLevel(
n = n, n.median = n.median.vec[i],
k = k.vec[i], m = m.vec[i], r = r,
rule = rule.vec[i], pi.type="upper")
# Alpha-levels based on using 2nd largest background observation
alpha.vec.2nd <- numeric(n.plans)
for(i in 1:n.plans)
alpha.vec.2nd[i] <- 1 -
predIntNparSimultaneousConfLevel(
n = n, n.median = n.median.vec[i],
k = k.vec[i], m = m.vec[i], r = r,
rule = rule.vec[i], pi.type="upper",
n.plus.one.minus.upl.rank = 2)
# Alpha-levels based on using 3rd largest background observation
alpha.vec.3rd <- numeric(n.plans)
for(i in 1:n.plans)
alpha.vec.3rd[i] <- 1 -
predIntNparSimultaneousConfLevel(
n = n, n.median = n.median.vec[i],
k = k.vec[i], m = m.vec[i], r = r,
rule = rule.vec[i], pi.type="upper",
n.plus.one.minus.upl.rank = 3)
Well.type <- EPA.09.Ex.19.5.mercury.df$Well.type
Hg <- EPA.09.Ex.19.5.mercury.df$Mercury.ppb
BG.sorted <- sort(Hg[Well.type == "Background"], decreasing = TRUE)
BG.sorted
# [1] 0.28 0.25 0.24 0.23 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20
#[15] 0.20 0.20 0.20 0.20 0.20 0.20
Candidate.Plans.df <- data.frame(Rule = rep(rule.vec, 3),
Median.n = rep(n.median.vec, 3),
k = rep(k.vec, 3), m = rep(m.vec, 3),
Order.Statistic = rep(c("Max", "2nd", "3rd"), each = n.plans),
Achieved.alpha = round(
c(alpha.vec.Max, alpha.vec.2nd, alpha.vec.3rd), 4),
BG.Limit = rep(BG.sorted[1:3], each = n.plans))
Candidate.Plans.df
# Rule Median.n k m Order.Statistic Achieved.alpha BG.Limit
#1 k.of.m 1 1 2 Max 0.0395 0.28
#2 k.of.m 1 1 3 Max 0.0055 0.28
#3 k.of.m 1 1 4 Max 0.0009 0.28
#4 Modified.CA 1 1 4 Max 0.0140 0.28
#5 k.of.m 3 1 1 Max 0.0961 0.28
#6 k.of.m 3 1 2 Max 0.0060 0.28
#7 k.of.m 1 1 2 2nd 0.1118 0.25
#8 k.of.m 1 1 3 2nd 0.0213 0.25
#9 k.of.m 1 1 4 2nd 0.0046 0.25
#10 Modified.CA 1 1 4 2nd 0.0516 0.25
#11 k.of.m 3 1 1 2nd 0.2474 0.25
#12 k.of.m 3 1 2 2nd 0.0268 0.25
#13 k.of.m 1 1 2 3rd 0.2082 0.24
#14 k.of.m 1 1 3 3rd 0.0516 0.24
#15 k.of.m 1 1 4 3rd 0.0135 0.24
#16 Modified.CA 1 1 4 3rd 0.1170 0.24
#17 k.of.m 3 1 1 3rd 0.4166 0.24
#18 k.of.m 3 1 2 3rd 0.0709 0.24
#--------------------------------------------------------------------
# Eliminate plans that do not achieve the per-constituent alpha level
#--------------------------------------------------------------------
index <- Candidate.Plans.df$Achieved.alpha <= alpha
Candidate.Plans.df <- Candidate.Plans.df[index, ]
Candidate.Plans.df
# Rule Median.n k m Order.Statistic Achieved.alpha BG.Limit
#2 k.of.m 1 1 3 Max 0.0055 0.28
#3 k.of.m 1 1 4 Max 0.0009 0.28
#4 Modified.CA 1 1 4 Max 0.0140 0.28
#6 k.of.m 3 1 2 Max 0.0060 0.28
#9 k.of.m 1 1 4 2nd 0.0046 0.25
#15 k.of.m 1 1 4 3rd 0.0135 0.24
#-------------------------------------------------
# Determine whether Well CW-1 is out of compliance
#-------------------------------------------------
EPA.09.Ex.19.5.mercury.df[Well == "CW-1", c("Well", "Event", "Mercury.ppb.orig")]
# Well Event Mercury.ppb.orig
#25 CW-1 1 0.22
#26 CW-1 2 0.2
#27 CW-1 3 <.2
#28 CW-1 4 0.25
#29 CW-1 5 0.24
#30 CW-1 6 <.2
# Rule Median.n k m Order.Statistic Achieved.alpha BG.Limit Result
# ----------- -------- - - --------------- -------------- -------- ------
# k.of.m 1 1 3 Max 0.0055 0.28 Pass. First value of 0.22 < BG Limit.
# k.of.m 1 1 4 Max 0.0009 0.28 Pass. First value of 0.22 < BG Limit.
# Modified.CA 1 1 4 Max 0.0140 0.28 Pass. First value of 0.22 < BG Limit.
# k.of.m 3 1 2 Max 0.0060 0.28 Pass. First value of 0.22 < BG Limit.
# k.of.m 1 1 4 2nd 0.0046 0.25 Pass. First value of 0.22 < BG Limit.
# k.of.m 1 1 4 3rd 0.0135 0.24 Pass. First value of 0.22 < BG Limit.
#-------------------------------------------------
# Determine whether Well CW-2 is out of compliance
#-------------------------------------------------
EPA.09.Ex.19.5.mercury.df[Well == "CW-2", c("Well", "Event", "Mercury.ppb.orig")]
# Well Event Mercury.ppb.orig
#31 CW-2 1 0.36
#32 CW-2 2 0.41
#33 CW-2 3 0.28
#34 CW-2 4 0.45
#35 CW-2 5 0.43
#36 CW-2 6 0.54
# Resampling is required for all plans because initial value of 0.36
# is greater than BG Limit, and median of first 3 values (also 0.36)
# is greater than BG Limit.
# Rule Median.n k m Order.Statistic Achieved.alpha BG.Limit Result
# ----------- -------- - - --------------- -------------- -------- ------
# k.of.m 1 1 3 Max 0.0055 0.28 Pass. Third value of 0.28 = BG Limit.
# k.of.m 1 1 4 Max 0.0009 0.28 Pass. Third value of 0.28 = BG Limit.
# Modified.CA 1 1 4 Max 0.0140 0.28 Fail. Only 1 of observations 2-4 <= 0.28.
# k.of.m 3 1 2 Max 0.0060 0.28 Fail. Both medians (0.36 and 0.45) > BG Limit.
# k.of.m 1 1 4 2nd 0.0046 0.25 Fail. Observations 1-4 all > 0.25.
# k.of.m 1 1 4 3rd 0.0135 0.24 Fail. Observations 1-4 all > 0.25.
#------------------------------------------------------------------------------
# Compute approximate power of each plan to detect contamination at just 1 well
# assuming true underying distribution of Hg is Normal at all wells.
#------------------------------------------------------------------------------
windows()
plotPredIntNparSimultaneousTestPowerCurve(n = 20,
k = 1, m = 4, r = 10, rule = "k.of.m",
n.plus.one.minus.upl.rank = 3,
pi.type = "upper", r.shifted = 1,
method = "approx", range.delta.over.sigma = c(0, 5), main = "")
plotPredIntNparSimultaneousTestPowerCurve(n = 20,
n.median = 3, k = 1, m = 2, r = 10, rule = "k.of.m",
n.plus.one.minus.upl.rank = 1,
pi.type = "upper", r.shifted = 1,
method = "approx", range.delta.over.sigma = c(0, 5),
add = TRUE, plot.col = 2, plot.lty = 2)
plotPredIntNparSimultaneousTestPowerCurve(n = 20,
r = 10, rule = "Modified.CA",
n.plus.one.minus.upl.rank = 1,
pi.type = "upper", r.shifted = 1,
method = "approx", range.delta.over.sigma = c(0, 5),
add = TRUE, plot.col = 3, plot.lty = 3)
plotPredIntNparSimultaneousTestPowerCurve(n = 20,
k = 1, m = 4, r = 10, rule = "k.of.m",
n.plus.one.minus.upl.rank = 2,
pi.type = "upper", r.shifted = 1,
method = "approx", range.delta.over.sigma = c(0, 5),
add = TRUE, plot.col = 4, plot.lty = 4)
plotPredIntNparSimultaneousTestPowerCurve(n = 20,
k = 1, m = 3, r = 10, rule = "k.of.m",
n.plus.one.minus.upl.rank = 1,
pi.type = "upper", r.shifted = 1,
method = "approx", range.delta.over.sigma = c(0, 5),
add = TRUE, plot.col = 5, plot.lty = 5)
plotPredIntNparSimultaneousTestPowerCurve(n = 20,
k = 1, m = 4, r = 10, rule = "k.of.m",
n.plus.one.minus.upl.rank = 1,
pi.type = "upper", r.shifted = 1,
method = "approx", range.delta.over.sigma = c(0, 5),
add = TRUE, plot.col = 6, plot.lty = 6)
legend(0, 1, legend = c("1-of-4, 3rd", "1-of-2, Max, Median", "Mod CA",
"1-of-4, 2nd", "1-of-3, Max", "1-of-4, Max"),
lwd = 3, col = 1:6, lty = 1:6, bty = "n")
title(main = "Figure 19-2. Comparison of Full Power Curves")
rm(Well.type, Hg, n, nw, nc, ne, r, conf.level, alpha,
n.median.vec, rule.vec, k.vec, m.vec, n.plans,
alpha.vec.Max, alpha.vec.2nd, alpha.vec.3rd,
BG.sorted, i, Candidate.Plans.df, index)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.