Nothing
#### Simulation for multiple change-points
### Here we recreate the simulation study from Appendix D in Moen et al. (2024), arXiv:2306.04702
## To recreate the table in the paper, uncomment lines 37 and 38
library(doSNOW)
library(HDCD)
library(foreach)
maindir = "... fill in ... "
dateandtime = gsub(" ", "--",as.character(Sys.time()))
dateandtime = gsub(":", ".", dateandtime)
savedir = file.path(maindir, dateandtime)
save = TRUE
if(save){
dir.create(savedir, showWarnings = FALSE)
savedir = file.path(maindir, sprintf("%s/multi_ESAC_comparison",dateandtime))
dir.create(savedir, showWarnings = FALSE)
}
N = 1000
num_cores = 6
sparse_const = 3.5
dense_const = 3.5
set.seed(1996)
rescale_variance = TRUE
Ncal = 1000
tol = 1/Ncal
ns = c(10,20)
ps = c(10,20)
#ns = c(200,500) #uncomment for using the same values of n as in the article
#ps = c(50,100,1000) #uncomment for using the same values of p as in the article
# calibrate ESAC thresholds:
cl <- makeCluster(num_cores,type="SOCK")
registerDoSNOW(cl)
pb <- txtProgressBar(max = ((length(ns)*length(ps))), style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)
calibrates = foreach(z = 0:((length(ns)*length(ps))-1),.options.snow = opts) %dopar% {
library(HDCD)
set.seed(300*z)
rez = list()
nind = floor(z/length(ps))+1
pind = z%%length(ps)+1
cc = ESAC_calibrate(ns[nind],ps[pind], N=Ncal, tol=tol,K=4, alpha = 2, fast = TRUE,
rescale_variance = rescale_variance, debug=FALSE)
cc2 = ESAC_calibrate(ns[nind],ps[pind], N=Ncal, tol=tol,K=4, alpha = 2, fast = FALSE,
rescale_variance = rescale_variance, debug=FALSE)
cc3 = ESAC_calibrate(ns[nind],ps[pind], N=Ncal, tol=tol,K=5, alpha = 1+1/2, fast = FALSE,
rescale_variance = rescale_variance, debug=FALSE)
rez[[1]] = cc[[1]] #ESAC threshoolds
rez[[2]] = cc[[2]] #ESAC thresholds
rez[[3]] = cc2[[1]]
rez[[4]] = cc2[[2]]
rez[[5]] = cc3[[1]]
rez[[6]] = cc3[[2]]
rez[[7]] = ns[nind]
rez[[8]] = ps[pind]
rez
#calibrates[[z+1]] = rez
}
close(pb)
stopCluster(cl)
numconfig = 7
config = function(i,n,p){
mus = matrix(0, nrow=p, ncol=n)
etas = c()
sparsities = c()
sparsity = c()
if(i==1){
# no chgppts
}
else if(i==2){
# 2 dense
sparsity="Dense"
etas = sort(sample(1:(n-1), 2))
sparsities = sample(ceiling(sqrt(p*log(n))):p,length(etas), replace=TRUE)
for (j in 1:length(etas)) {
Delta = 1
if(j==1){
Delta = min(etas[1], etas[2]-etas[1])
}else if(j<length(etas)){
Delta = min(etas[j] - etas[j-1], etas[j+1] - etas[j])
}else{
Delta = min(etas[j]-etas[j-1], n -etas[j])
}
phi = dense_const/sqrt(Delta)*(p*log(n))^(1/4)
k = sparsities[j]
coords = sample(1:p, sparsities[j])
#diff = runif(k) *sample(c(-1,1), sparsities[j], replace=TRUE)
diff = sample(c(-1,1), sparsities[j], replace=TRUE)
diff = diff/norm(diff, type="2")
mus[coords, (etas[j]+1):n] = mus[coords, (etas[j]+1):n] + matrix(rep(diff*phi, n-etas[j]), nrow = length(coords))
}
}
else if(i==3){
# 2 sparse
sparsity = "Sparse"
etas = sort(sample(1:(n-1), 2))
sparsities = sample(1:floor(sqrt(p*log(n))),length(etas), replace=TRUE )
for (j in 1:length(etas)) {
Delta = 1
if(j==1){
Delta = min(etas[1], etas[2]-etas[1])
}else if(j<length(etas)){
Delta = min(etas[j] - etas[j-1], etas[j+1] - etas[j])
}else{
Delta = min(etas[j]-etas[j-1], n -etas[j])
}
k = sparsities[j]
phi = sparse_const/sqrt(Delta)*sqrt((c(k*log(exp(1)*p*log(n)/k^2)+ log(n))))
coords = sample(1:p, sparsities[j])
#diff = runif(k)*sample(c(-1,1), sparsities[j], replace=TRUE)
diff = sample(c(-1,1), sparsities[j], replace=TRUE)
diff = diff/norm(diff, type="2")
mus[coords, (etas[j]+1):n] = mus[coords, (etas[j]+1):n] +matrix(rep(diff*phi, n-etas[j]), nrow = length(coords))
}
}
else if(i==4){
# 2 mixed
sparsity="Mixed"
etas = sort(sample(1:(n-1), 2))
sparsities = sample(c(1,2), length(etas), replace=TRUE)
for (j in 1:length(etas)) {
Delta = 1
if(j==1){
Delta = min(etas[1], etas[2]-etas[1])
}else if(j<length(etas)){
Delta = min(etas[j] - etas[j-1], etas[j+1] - etas[j])
}else{
Delta = min(etas[j]-etas[j-1], n -etas[j])
}
if(sparsities[j]==1){
# sparse
sparsities[j] = sample(1:floor(sqrt(p*log(n))),1)
k = sparsities[j]
phi = sparse_const/sqrt(Delta)*sqrt((c(k*log(exp(1)*p*log(n)/k^2)+ log(n))))
}else{
#dense
sparsities[j] = sample(ceiling(sqrt(p*log(n))):p,1)
k = sparsities[j]
phi = dense_const/sqrt(Delta)*(p*log(n))^(1/4)
}
coords = sample(1:p, sparsities[j])
#diff = runif(k)*sample(c(-1,1), sparsities[j], replace=TRUE)
diff = sample(c(-1,1), sparsities[j], replace=TRUE)
diff = diff/norm(diff, type="2")
mus[coords, (etas[j]+1):n] = mus[coords, (etas[j]+1):n] +matrix(rep(diff*phi, n-etas[j]), nrow = length(coords))
}
}
else if(i==5){
# 5 dense
sparsity="Dense"
etas = sort(sample(1:(n-1), 5))
sparsities = sample(ceiling(sqrt(p*log(n))):p,length(etas), replace=TRUE)
for (j in 1:length(etas)) {
Delta = 1
if(j==1){
Delta = min(etas[1], etas[2]-etas[1])
}else if(j<length(etas)){
Delta = min(etas[j] - etas[j-1], etas[j+1] - etas[j])
}else{
Delta = min(etas[j]-etas[j-1], n -etas[j])
}
phi = dense_const/sqrt(Delta)*(p*log(n))^(1/4)
k = sparsities[j]
coords = sample(1:p, sparsities[j])
#diff = runif(k) *sample(c(-1,1), sparsities[j], replace=TRUE)
diff = sample(c(-1,1), sparsities[j], replace=TRUE)
diff = diff/norm(diff, type="2")
mus[coords, (etas[j]+1):n] = mus[coords, (etas[j]+1):n] + matrix(rep(diff*phi, n-etas[j]), nrow = length(coords))
}
}
else if(i==6){
# 5 sparse
sparsity = "Sparse"
etas = sort(sample(1:(n-1), 5))
sparsities = sample(1:floor(sqrt(p*log(n))),length(etas), replace=TRUE )
for (j in 1:length(etas)) {
Delta = 1
if(j==1){
Delta = min(etas[1], etas[2]-etas[1])
}else if(j<length(etas)){
Delta = min(etas[j] - etas[j-1], etas[j+1] - etas[j])
}else{
Delta = min(etas[j]-etas[j-1], n -etas[j])
}
k = sparsities[j]
phi = sparse_const/sqrt(Delta)*sqrt((c(k*log(exp(1)*p*log(n)/k^2)+ log(n))))
coords = sample(1:p, sparsities[j])
#diff = runif(k)*sample(c(-1,1), sparsities[j], replace=TRUE)
diff = sample(c(-1,1), sparsities[j], replace=TRUE)
diff = diff/norm(diff, type="2")
mus[coords, (etas[j]+1):n] = mus[coords, (etas[j]+1):n] +matrix(rep(diff*phi, n-etas[j]), nrow = length(coords))
}
}
else if(i==7){
# 5 mixed
sparsity="Mixed"
etas = sort(sample(1:(n-1), 5))
sparsities = sample(c(1,2), length(etas), replace=TRUE)
for (j in 1:length(etas)) {
Delta = 1
if(j==1){
Delta = min(etas[1], etas[2]-etas[1])
}else if(j<length(etas)){
Delta = min(etas[j] - etas[j-1], etas[j+1] - etas[j])
}else{
Delta = min(etas[j]-etas[j-1], n -etas[j])
}
if(sparsities[j]==1){
# sparse
sparsities[j] = sample(1:floor(sqrt(p*log(n))),1)
k = sparsities[j]
phi = sparse_const/sqrt(Delta)*sqrt((c(k*log(exp(1)*p*log(n)/k^2)+ log(n))))
}else{
#dense
sparsities[j] = sample(ceiling(sqrt(p*log(n))):p,1)
k = sparsities[j]
phi = dense_const/sqrt(Delta)*(p*log(n))^(1/4)
}
coords = sample(1:p, sparsities[j])
#diff = runif(k)*sample(c(-1,1), sparsities[j], replace=TRUE)
diff = sample(c(-1,1), sparsities[j], replace=TRUE)
diff = diff/norm(diff, type="2")
mus[coords, (etas[j]+1):n] = mus[coords, (etas[j]+1):n] +matrix(rep(diff*phi, n-etas[j]), nrow = length(coords))
}
}
return(list(etas, sparsities,mus,sparsity))
}
cl <- makeCluster(num_cores,type="SOCK")
registerDoSNOW(cl)
pb <- txtProgressBar(max = N, style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress = progress)
#for(z in 1:N){
result = foreach(z = 1:N,.options.snow = opts) %dopar% {
rez = list()
set.seed(2*z)
library(HDCD)
library(hdbinseg)
counter = 1
for (i in 1:length(ns)) {
n = ns[i]
for(j in 1:length(ps)){
p = ps[j]
for (y in 1:numconfig) {
noise = matrix(rnorm(n*p), nrow=p, ncol=n)
conf = config(y, n, p)
etas = conf[[1]]
sparsities = conf[[2]]
mus = conf[[3]]
X = noise + mus
rezi = list()
rezi[["i"]] = i
rezi[["j"]] = j
rezi[["y"]] = y
a = proc.time()
res = ESAC (X[,], 1.5,1, empirical=TRUE,alpha = 2, K = 4, thresholds_test = (calibrates[[j+(i-1)*length(ps)]])[[2]], fast =TRUE,
rescale_variance = rescale_variance, debug= FALSE)
b=proc.time()
rezi[["ESAC_fast_time"]] = (b-a)[1]+(b-a)[2]
rezi[["ESAC_fast_K"]]= res$changepointnumber
rezi[["ESAC_fast_chgpts"]]= res$changepoints
if(res$changepointnumber==0){
rezi[["ESAC_fast_hausd"]] = n
}else{
rezi[["ESAC_fast_hausd"]] = hausdorff(res$changepoints, etas,n)
}
rezi[["ESAC_fast_K"]] = length(res$changepoints) - length(etas)
a = proc.time()
res = ESAC (X[,], 1.5,1, empirical=TRUE,alpha = 2, K = 4, thresholds_test = (calibrates[[j+(i-1)*length(ps)]])[[1]], fast =TRUE,
rescale_variance = rescale_variance, debug= FALSE)
b=proc.time()
rezi[["ESAC_fast_np_time"]] = (b-a)[1]+(b-a)[2]
rezi[["ESAC_fast_np_K"]]= res$changepointnumber
rezi[["ESAC_fast_np_chgpts"]]= res$changepoints
if(res$changepointnumber==0){
rezi[["ESAC_fast_np_hausd"]] = n
}else{
rezi[["ESAC_fast_np_hausd"]] = hausdorff(res$changepoints, etas,n)
}
rezi[["ESAC_fast_np_K"]] = length(res$changepoints) - length(etas)
a = proc.time()
res = ESAC (X[,], 1.5,1, empirical=TRUE,alpha = 2, K = 4, thresholds_test = (calibrates[[j+(i-1)*length(ps)]])[[3]], fast =FALSE,
rescale_variance = rescale_variance, debug= FALSE)
b=proc.time()
rezi[["ESAC_time"]] = (b-a)[1]+(b-a)[2]
rezi[["ESAC_K"]]= res$changepointnumber
rezi[["ESAC_chgpts"]]= res$changepoints
if(res$changepointnumber==0){
rezi[["ESAC_hausd"]] = n
}else{
rezi[["ESAC_hausd"]] = hausdorff(res$changepoints, etas,n)
}
rezi[["ESAC_K"]] = length(res$changepoints) - length(etas)
a = proc.time()
res = ESAC (X[,], 1.5,1, empirical=TRUE,alpha = 1.5, K = 5, thresholds_test = (calibrates[[j+(i-1)*length(ps)]])[[5]], fast =FALSE,
rescale_variance = rescale_variance, debug= FALSE)
b=proc.time()
rezi[["ESAC_long_time"]] = (b-a)[1]+(b-a)[2]
rezi[["ESAC_long_K"]]= res$changepointnumber
rezi[["ESAC_long_chgpts"]]= res$changepoints
if(res$changepointnumber==0){
rezi[["ESAC_long_hausd"]] = n
}else{
rezi[["ESAC_long_hausd"]] = hausdorff(res$changepoints, etas,n)
}
rezi[["ESAC_long_K"]] = length(res$changepoints) - length(etas)
a = proc.time()
res = ESAC (X[,], 1.5,1, empirical=TRUE,alpha = 2, K = 4, thresholds = (calibrates[[j+(i-1)*length(ps)]])[[3]], thresholds_test = (calibrates[[j+(i-1)*length(ps)]])[[3]], fast =FALSE,
rescale_variance = rescale_variance, debug= FALSE)
b=proc.time()
rezi[["ESAC_emp_time"]] = (b-a)[1]+(b-a)[2]
rezi[["ESAC_emp_K"]]= res$changepointnumber
rezi[["ESAC_emp_chgpts"]]= res$changepoints
if(res$changepointnumber==0){
rezi[["ESAC_emp_hausd"]] = n
}else{
rezi[["ESAC_emp_hausd"]] = hausdorff(res$changepoints, etas,n)
}
rezi[["ESAC_emp_K"]] = length(res$changepoints) - length(etas)
a = proc.time()
res = ESAC (X[,], 1.5,1, empirical=TRUE,alpha = 1.5, K = 5, thresholds_test = (calibrates[[j+(i-1)*length(ps)]])[[5]], thresholds = (calibrates[[j+(i-1)*length(ps)]])[[5]], fast =FALSE,
rescale_variance = rescale_variance, debug= FALSE)
b=proc.time()
rezi[["ESAC_long_emp_time"]] = (b-a)[1]+(b-a)[2]
rezi[["ESAC_long_emp_K"]]= res$changepointnumber
rezi[["ESAC_long_emp_chgpts"]]= res$changepoints
if(res$changepointnumber==0){
rezi[["ESAC_long_emp_hausd"]] = n
}else{
rezi[["ESAC_long_emp_hausd"]] = hausdorff(res$changepoints, etas,n)
}
rezi[["ESAC_long_emp_K"]] = length(res$changepoints) - length(etas)
rezi[["true_K"]] = length(etas)
rezi[["true_etas"]] = etas
rezi[["true_sparsities"]] = sparsities
rez[[counter]] = rezi
counter = counter+1
}
}
}
rez
}
close(pb)
stopCluster(cl)
{
ESAC_fast_hausd = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_fast_Kerr = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_fast_time = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_fast_ari = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_fast_np_hausd = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_fast_np_Kerr = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_fast_np_time = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_fast_np_ari = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_hausd = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_Kerr = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_time = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_ari = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_long_hausd = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_long_Kerr = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_long_time = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_long_ari = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_emp_hausd = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_emp_Kerr = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_emp_time = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_emp_ari = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_long_emp_hausd = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_long_emp_Kerr = array(0, dim = c(length(ns), length(ps), numconfig) )
ESAC_long_emp_time = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_long_emp_ari = array(0, dim= c(length(ns), length(ps), numconfig))
ESAC_fast_hausd[,,1] = NA
ESAC_fast_np_hausd[,,1] = NA
ESAC_hausd[,,1] = NA
ESAC_emp_hausd[,,1] = NA
ESAC_long_emp_hausd[,,1] = NA
ESAC_long_hausd[,,1] = NA
for (z in 1:N) {
list = result[[z]]
len = length(list)
for (t in 1:len) {
sublist = list[[t]]
y = sublist[["y"]]
i = sublist[["i"]]
j = sublist[["j"]]
ESAC_fast_Kerr[i,j,y] = ESAC_fast_Kerr[i,j,y] + abs(sublist[["ESAC_fast_K"]])/N
ESAC_fast_np_Kerr[i,j,y] = ESAC_fast_np_Kerr[i,j,y] + abs(sublist[["ESAC_fast_np_K"]])/N
ESAC_Kerr[i,j,y] = ESAC_Kerr[i,j,y] + abs(sublist[["ESAC_K"]])/N
ESAC_emp_Kerr[i,j,y] = ESAC_emp_Kerr[i,j,y] + abs(sublist[["ESAC_emp_K"]])/N
ESAC_long_Kerr[i,j,y] = ESAC_long_Kerr[i,j,y] + abs(sublist[["ESAC_long_K"]])/N
ESAC_long_emp_Kerr[i,j,y] = ESAC_long_emp_Kerr[i,j,y] + abs(sublist[["ESAC_long_emp_K"]])/N
ESAC_fast_time[i,j,y] = ESAC_fast_time[i,j,y] + sublist[["ESAC_fast_time"]]/N
ESAC_fast_np_time[i,j,y] = ESAC_fast_np_time[i,j,y] + sublist[["ESAC_fast_np_time"]]/N
ESAC_time[i,j,y] = ESAC_time[i,j,y] + sublist[["ESAC_time"]]/N
ESAC_emp_time[i,j,y] = ESAC_emp_time[i,j,y] + sublist[["ESAC_emp_time"]]/N
ESAC_long_time[i,j,y] = ESAC_long_time[i,j,y] + sublist[["ESAC_long_time"]]/N
ESAC_long_emp_time[i,j,y] = ESAC_long_emp_time[i,j,y] + sublist[["ESAC_long_emp_time"]]/N
# ESAC_fast_ari[i,j,y] = ESAC_fast_ari[i,j,y] + sublist[["ESAC_fast_ari"]]/N
# ESAC_fast_np_ari[i,j,y] = ESAC_fast_np_ari[i,j,y] + sublist[["ESAC_fast_np_ari"]]/N
# ESAC_ari[i,j,y] = ESAC_ari[i,j,y] + sublist[["ESAC_ari"]]/N
# ESAC_emp_ari[i,j,y] = ESAC_emp_ari[i,j,y] + sublist[["ESAC_emp_ari"]]/N
# ESAC_long_ari[i,j,y] = ESAC_long_ari[i,j,y] + sublist[["ESAC_long_ari"]]/N
# ESAC_long_emp_ari[i,j,y] = ESAC_long_emp_ari[i,j,y] + sublist[["ESAC_long_emp_ari"]]/N
if(y!= 1){
ESAC_fast_hausd[i,j,y] = ESAC_fast_hausd[i,j,y] + sublist[["ESAC_fast_hausd"]]/N
ESAC_fast_np_hausd[i,j,y] = ESAC_fast_np_hausd[i,j,y] + sublist[["ESAC_fast_np_hausd"]]/N
ESAC_hausd[i,j,y] = ESAC_hausd[i,j,y] + sublist[["ESAC_hausd"]]/N
ESAC_emp_hausd[i,j,y] = ESAC_emp_hausd[i,j,y] + sublist[["ESAC_emp_hausd"]]/N
ESAC_long_hausd[i,j,y] = ESAC_long_hausd[i,j,y] + sublist[["ESAC_long_hausd"]]/N
ESAC_long_emp_hausd[i,j,y] = ESAC_long_emp_hausd[i,j,y] + sublist[["ESAC_long_emp_hausd"]]/N
}
}
}
}
if(save){
saveRDS(result, file=sprintf("%s/result.RDA", savedir))
saveRDS(ESAC_fast_hausd, file=sprintf("%s/ESAC_fast_haus.RDA", savedir))
saveRDS(ESAC_fast_time, file=sprintf("%s/ESAC_fast_time.RDA", savedir))
saveRDS(ESAC_fast_Kerr, file=sprintf("%s/ESAC_fast_Kerr.RDA", savedir))
saveRDS(ESAC_fast_ari, file=sprintf("%s/ESAC_fast_ari.RDA", savedir))
saveRDS(ESAC_fast_np_hausd, file=sprintf("%s/ESAC_fast_np_haus.RDA", savedir))
saveRDS(ESAC_fast_np_time, file=sprintf("%s/ESAC_fast_np_time.RDA", savedir))
saveRDS(ESAC_fast_np_Kerr, file=sprintf("%s/ESAC_fast_np_Kerr.RDA", savedir))
saveRDS(ESAC_fast_np_ari, file=sprintf("%s/ESAC_fast_np_ari.RDA", savedir))
saveRDS(ESAC_hausd, file=sprintf("%s/ESAC_haus.RDA", savedir))
saveRDS(ESAC_time, file=sprintf("%s/ESAC_time.RDA", savedir))
saveRDS(ESAC_Kerr, file=sprintf("%s/ESAC_Kerr.RDA", savedir))
saveRDS(ESAC_ari, file=sprintf("%s/ESAC_ari.RDA", savedir))
saveRDS(ESAC_long_hausd, file=sprintf("%s/ESAC_long_haus.RDA", savedir))
saveRDS(ESAC_long_time, file=sprintf("%s/ESAC_long_time.RDA", savedir))
saveRDS(ESAC_long_Kerr, file=sprintf("%s/ESAC_long_Kerr.RDA", savedir))
saveRDS(ESAC_long_ari, file=sprintf("%s/ESAC_long_ari.RDA", savedir))
saveRDS(ESAC_emp_hausd, file=sprintf("%s/ESAC_emp_haus.RDA", savedir))
saveRDS(ESAC_emp_time, file=sprintf("%s/ESAC_emp_time.RDA", savedir))
saveRDS(ESAC_emp_Kerr, file=sprintf("%s/ESAC_emp_Kerr.RDA", savedir))
saveRDS(ESAC_emp_ari, file=sprintf("%s/ESAC_emp_ari.RDA", savedir))
saveRDS(ESAC_long_emp_hausd, file=sprintf("%s/ESAC_long_emp_haus.RDA", savedir))
saveRDS(ESAC_long_emp_time, file=sprintf("%s/ESAC_long_emp_time.RDA", savedir))
saveRDS(ESAC_long_emp_Kerr, file=sprintf("%s/ESAC_long_emp_Kerr.RDA", savedir))
saveRDS(ESAC_long_emp_ari, file=sprintf("%s/ESAC_long_emp_ari.RDA", savedir))
infofile<-file(sprintf("%s/parameters.txt", savedir))
writeLines(c(sprintf("N = %d", N),
sprintf("n = %d", n),
sprintf("p = %d", p),
sprintf("Sparse constant = %f", sparse_const),
sprintf("Dense constant = %f", dense_const),
sprintf("Rescale variance = %d", as.integer(rescale_variance))),
infofile)
close(infofile)
}
# creating table:
if(save){
# output latex table
printlines = c("%%REMEMBER to use package \\usepackage{rotating}!!",
" \\begin{table}[H] \\centering",
"\\caption{Multiple changepoints}",
"\\label{}",
"\\small",
"\\begin{adjustbox}{scale=0.55,center}",
"\\begin{tabular}{@{\\extracolsep{1pt}} cccc|cccc|cccc|cccc|cccc}",
"\\hline",
"\\multicolumn{4}{c|}{Parameters} & \\multicolumn{4}{c|}{Hausdorff distance} &\\multicolumn{4}{c|}{$\\left | \\widehat{K}-K \\right |$} &\\multicolumn{4}{c|}{ARI} &\\multicolumn{4}{c}{Time in miliseconds} \\\\ \\hline ",
"$n$ & $p$ & Sparsity & K & \\text{ESAC A} & \\text{ESAC B} & \\text{ ESAC C} & \\text{ESAC D} & \\text{ESAC A} & \\text{ESAC B} & \\text{ESAC C} & \\text{ESAC D} &\\text{ESAC A} & \\text{ESAC B} & \\text{ESAC C} & \\text{ESAC D} &\\text{ESAC A} & \\text{ESAC B} & \\text{ESAC C} & \\text{ESAC D} \\\\",
"\\hline \\")
for (i in 1:length(ns)) {
n = ns[i]
for(j in 1:length(ps)){
p = ps[j]
for (y in 1:numconfig) {
conf = config(y, n, p)
etas = conf[[1]]
#sparsities = conf[[2]]
#mus = conf[[3]]
sparsity = conf[[4]]
if(is.null(sparsity)){
sparsity="-"
}
string = sprintf("%d & %d & %s & %d ", n, p, sparsity, length(etas))
if(y==1){
for (t in 1:4) {
string = sprintf("%s & - ", string)
}
}
else{
res = round(c(ESAC_fast_hausd[i,j,y], ESAC_fast_np_hausd[i,j,y], ESAC_hausd[i,j,y], ESAC_long_hausd[i,j,y]),digits=3)
minind = (res==min(na.omit(res)))
res = c(ESAC_fast_hausd[i,j,y], ESAC_fast_np_hausd[i,j,y], ESAC_hausd[i,j,y], ESAC_long_hausd[i,j,y])
for (t in 1:length(res)) {
if(is.na(res[t])){
string = sprintf("%s & - ", string)
}
else if(minind[t]){
string = sprintf("%s & \\textbf{%.3f} ", string, res[t])
}else{
string = sprintf("%s & %.3f", string, res[t])
}
}
}
res = round(c(ESAC_fast_Kerr[i,j,y], ESAC_fast_np_Kerr[i,j,y], ESAC_Kerr[i,j,y], ESAC_long_Kerr[i,j,y]),digits=3)
minind = (abs(res)==min(abs(res)))
res = c(ESAC_fast_Kerr[i,j,y], ESAC_fast_np_Kerr[i,j,y], ESAC_Kerr[i,j,y], ESAC_long_Kerr[i,j,y])
for (t in 1:length(res)) {
if(minind[t]){
string = sprintf("%s & \\textbf{%.3f} ", string, res[t])
}else{
string = sprintf("%s & %.3f", string, res[t])
}
}
res = round(c(ESAC_fast_ari[i,j,y], ESAC_fast_np_ari[i,j,y], ESAC_ari[i,j,y], ESAC_long_ari[i,j,y]),digits=3)
minind = (abs(res)==max(abs(res)))
res = c(ESAC_fast_ari[i,j,y], ESAC_fast_np_ari[i,j,y], ESAC_ari[i,j,y], ESAC_long_ari[i,j,y])
for (t in 1:length(res)) {
if(minind[t]){
string = sprintf("%s & \\textbf{%.3f} ", string, res[t])
}else{
string = sprintf("%s & %.3f", string, res[t])
}
}
res = round(1000*c(ESAC_fast_time[i,j,y], ESAC_fast_np_time[i,j,y], ESAC_time[i,j,y], ESAC_long_time[i,j,y]),digits=3)
minind = (res==min(res))
res = 1000*c(ESAC_fast_time[i,j,y], ESAC_fast_np_time[i,j,y], ESAC_time[i,j,y], ESAC_long_time[i,j,y])
for (t in 1:length(res)) {
if(minind[t]){
string = sprintf("%s & \\textbf{%.3f} ", string, res[t])
}else{
string = sprintf("%s & %.3f", string, res[t])
}
}
string = sprintf("%s \\\\", string)
printlines = c(printlines, string)
}
}
}
printlines = c(printlines, c("\\hline \\\\[-1.8ex]",
"\\end{tabular}",
"\\end{adjustbox}",
"\\end{table}"))
texfile<-file(sprintf("%s/table.tex", savedir))
writeLines(printlines, texfile)
close(texfile)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.