Nothing
#' @title Modality proportion broken down by event type
#'
#' @description Tabulates and plots the proportion of each modality broken down by splicing event type.
#'
#' @param MarvelObject Marvel object. S3 object generated from \code{AssignModality} function.
#' @param modality.column Character string. Can take the value \code{"modality"}, \code{"modality.var"} or \code{"modality.bimodal.adj"}. Please refer to \code{AssignModality} function help page for more details.
#' @param modality.type Character string. \code{basic} indicates that only the main modalities (included, excluded, bimodal, middle, multimodal) are analysed. Sub-modalities (primary and dispersed) will be merged. \code{extended} indicates that both main and sub-modalities are analysed. Sub-modalities will not be merged.
#' @param event.type Character string. To indicate which event type to analyse. Can take the value \code{"SE"}, \code{"MXE"}, \code{"RI"}, \code{"A5SS"} or \code{"A3SS"}. Specify \code{"all"} to include all event types.
#' @param xlabels.size Numeric value. Size of x-axis labels as per \code{ggplot2} function. Default is 8.
#' @param zoom Logical value. If set to \code{TRUE}, users can specify the range of the y-axis using \code{yinterval} argument. Useful when scrutinasing low-frequency event types, e.g. middle and multimodal.
#' @param yinterval Logical value. Only applicable when \code{zoom} is set to \code{TRUE}.
#' @param prop.test Character string. Only applicable when \code{across.event.type} set to \code{TRUE}. \code{chisq} Chi-squared test used to compare the proportion of modalities across the different event splicing type. \code{fisher} Fisher test used to compare the proportion of modalities across the different splicing event type.
#' @param prop.adj Character string. Only applicable when \code{across.event.type} set to \code{TRUE}. Adjust p-values generated from \code{prop.test} for multiple testing. Options available as per \code{p.adjust} function.
#'
#' @return An object of class S3 containing new slots \code{MarvelObject$Modality$Prop$BarChart$Table} and \code{MarvelObject$Modality$Prop$BarChart$Stats}.
#'
#' @importFrom plyr join
#' @importFrom stats chisq.test fisher.test p.adjust p.adjust.methods
#' @import methods
#' @import ggplot2
#'
#' @export
#'
#' @examples
#' marvel.demo <- readRDS(system.file("extdata/data", "marvel.demo.rds", package="MARVEL"))
#'
#' marvel.demo <- PropModality.Bar(MarvelObject=marvel.demo,
#' modality.column="modality.bimodal.adj",
#' modality.type="extended",
#' event.type=c("SE", "MXE", "RI", "A5SS", "A3SS", "AFE", "ALE"),
#' prop.test="fisher",
#' prop.adj="fdr"
#' )
#'
#' # Check outputs
#' head(marvel.demo$Modality$Prop$BarChart$Table)
#' marvel.demo$Modality$Prop$BarChart$Plot
#' marvel.demo$Modality$Prop$BarChart$Stats
PropModality.Bar <- function(MarvelObject, modality.column, modality.type, event.type, xlabels.size=8, zoom=FALSE, yinterval=NULL, prop.test, prop.adj) {
# Define arguments
df.feature <- MarvelObject$Modality$Results
modality.column <- modality.column
modality.type <- modality.type
event.type <- event.type
xlabels.size <- xlabels.size
prop.test <- prop.test
prop.adj <- prop.adj
zoom <- zoom
yinterval <- yinterval
# Example arguments
#df.feature <- marvel$Modality$Results
#modality.column <- "modality.bimodal.adj"
#modality.type <- "extended"
#event.type <- c("SE", "MXE", "RI", "A5SS", "A3SS")
#xlabels.size <- 8
#prop.test <- "chisq"
#prop.adj <- "fdr"
#zoom <- TRUE
#yinterval <- c(0, 2.5)
# Subset relevant modality column
df.feature <- df.feature[,c("event_type", modality.column)]
names(df.feature)[which(names(df.feature)==modality.column)] <- "modality"
# Subset relevant event type
event.type <- intersect(event.type, unique(df.feature$event_type))
df.feature <- df.feature[which(df.feature$event_type %in% event.type), ]
# Merge sub-modalities
if(modality.type=="basic") {
df.feature$modality[grep("^Included", df.feature$modality)] <- "Included"
df.feature$modality[grep("^Excluded", df.feature$modality)] <- "Excluded"
}
# Tabulate modality by event type
event_types <- event.type
.list <- list()
for(i in 1:length(event_types)) {
# Subset relevant event type
. <- df.feature[which(df.feature$event_type==event_types[i]), ]
# Compute %
. <- as.data.frame(table(.$modality), stringsAsFactors=FALSE)
names(.) <- c("modality", "freq")
.$pct <- .$freq / sum(.$freq) * 100
# Set factor levels
if(modality.type=="basic") {
levels <- intersect(c("Included", "Excluded", "Bimodal", "Middle", "Multimodal"), unique(.$modality))
.$modality <- factor(.$modality, levels=levels)
. <- .[order(.$modality), ]
} else if(modality.type=="extended"){
levels <- intersect(c("Included.Primary", "Included.Dispersed", "Excluded.Primary", "Excluded.Dispersed", "Bimodal", "Middle", "Multimodal"), unique(.$modality))
labels <- gsub(".", "\n", levels, fixed=TRUE)
labels <- gsub("Primary", "(Primary)", labels, fixed=TRUE)
labels <- gsub("Dispersed", "(Dispersed)", labels, fixed=TRUE)
.$modality <- factor(.$modality, levels=levels, labels=labels)
. <- .[order(.$modality), ]
}
# Indicate event type
.$event_type <- event_types[i]
# Save into list
.list[[i]] <- .
}
. <- do.call(rbind.data.frame, .list)
# Set factor levels
.$event_type <- factor(.$event_type, levels=event.type)
# Create dummy entry for missing modalities
event_types <- levels(.$event_type)
modalities <- levels(.$modality)
for(i in 1:length(event_types)) {
.small <- .[which(.$event_type==event_types[i]), ]
if(length(modalities)==nrow(.small)) {
.list[[i]] <- .small
} else {
modality.missing <- setdiff(modalities, .small$modality)
modality.missing.df <- data.frame("modality"=modality.missing,
"freq"=0,
"pct"=0,
"event_type"=event_types[i],
stringsAsFactors=FALSE
)
.list[[i]] <- rbind.data.frame(.small, modality.missing.df)
}
}
. <- do.call(rbind.data.frame, .list)
. <- .[order(.$event_type, .$modality),]
# Save to new slot
temp <- .
temp$modality <- gsub("\n", " ", temp$modality)
MarvelObject$Modality$Prop$BarChart$Table <- temp
# Plot
if(zoom==FALSE) {
# Definitions
data <- .
x <- data$modality
y <- data$pct
z <- data$event_type
maintitle <- ""
ytitle <- "%"
xtitle <- ""
#fivenum(y) ; ymin <- 0 ; ymax <- 76 ; yinterval <- 10
legendtitle <- "Event Type"
# Plot
plot <- ggplot() +
geom_bar(data=data, aes(x=x, y=y, fill=z), stat="identity", color="black", position=position_dodge(), width=0.8) +
labs(title=maintitle, x=xtitle, y=ytitle, fill=legendtitle) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border=element_blank(),
plot.title=element_text(hjust = 0.5, size=12),
plot.subtitle=element_text(hjust = 0.5, size=12),
axis.line.y.left = element_line(color="black"),
axis.line.x = element_line(color="black"),
axis.title=element_text(size=12),
axis.text=element_text(size=12),
axis.text.x=element_text(size=xlabels.size, colour="black"),
axis.text.y=element_text(size=10, colour="black"),
legend.title=element_text(size=8),
legend.text=element_text(size=8)
)
# Save to new slot
MarvelObject$Modality$Prop$BarChart$Plot <- plot
} else {
# Definitions
data <- .
x <- data$modality
y <- data$pct
z <- data$event_type
maintitle <- ""
ytitle <- "%"
xtitle <- ""
#fivenum(y) ; ymin <- 0 ; ymax <- 76 ; yinterval <- 10
legendtitle <- "Event Type"
# Plot
plot <- ggplot() +
geom_bar(data=data, aes(x=x, y=y, fill=z), stat="identity", color="black", position=position_dodge(), width=0.8) +
labs(title=maintitle, x=xtitle, y=ytitle, fill=legendtitle) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.border=element_blank(),
plot.title=element_text(hjust = 0.5, size=12),
plot.subtitle=element_text(hjust = 0.5, size=12),
axis.line.y.left = element_line(color="black"),
axis.line.x = element_line(color="black"),
axis.title=element_text(size=12),
axis.text=element_text(size=12),
axis.text.x=element_text(size=xlabels.size, colour="black"),
axis.text.y=element_text(size=10, colour="black"),
legend.title=element_text(size=8),
legend.text=element_text(size=8)
) +
coord_cartesian(ylim=yinterval)
# Save to new slot
MarvelObject$Modality$Prop$BarChart$Plot <- plot
}
# x^2 test
# Compute the sum by event type
total <- tapply(.$freq, .$event_type, sum)
total <- data.frame(total)
total$event_type <- row.names(total)
# Tabulate freq (others)
mod <- levels(.$modality)
p.val <- NULL
for(i in 1:length(mod)) {
.small <- .[which(.$modality==mod[i]),]
if(nrow(.small) >= 2) {
.small <- join(.small, total, by="event_type", type="left")
.small$freq.others <- .small$total - .small$freq
if(prop.test=="chisq") {
p.val[i] <- chisq.test(.small[,c("freq", "freq.others")])$p.value
} else {
p.val[i] <- fisher.test(.small[,c("freq", "freq.others")])$p.value
}
} else {
p.val[i] <- NA
}
}
results <- data.frame("modality"=mod, "p.val"=p.val, stringsAsFactors=FALSE)
# Adjuste for multiple testing
results$p.val.adj <- p.adjust(results$p.val, method=prop.adj, n=length(results$p.val))
# Remove line breaks
results$modality <- gsub("\n", " ", results$modality, fixed=TRUE)
# Save to new slot
MarvelObject$Modality$Prop$BarChart$Stats <- results
return(MarvelObject)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.