Description Usage Format Source References Examples
Preliminary stage of an interaction matrix: Distance matrix for all statistical 42 districts and all 63 grocery stores (i = 42 submarkets x j = 63 suppliers) in Freiburg (Germany) including the size of the grocery stores.
1 | data("Freiburg1")
|
A data frame with 2646 observations on the following 4 variables.
district
a numeric vector representing the 42 statistical districts of Freiburg
store
a numeric vector identifying the store code of the mentioned grocery store in the study area
salesarea
a numeric vector for the sales area of the grocery stores in sqm
distance
a numeric vector for the distance from the places of residence (statistical districts) to the grocery stores in km
Wieland, T. (2015): “Nahversorgung im Kontext raumoekonomischer Entwicklungen im Lebensmitteleinzelhandel - Konzeption und Durchfuehrung einer GIS-gestuetzten Analyse der Strukturen des Lebensmitteleinzelhandels und der Nahversorgung in Freiburg im Breisgau”. Projektbericht. Goettingen : GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universitaet Goettingen. http://webdoc.sub.gwdg.de/pub/mon/2015/5-wieland.pdf
Wieland, T. (2015): “Nahversorgung im Kontext raumoekonomischer Entwicklungen im Lebensmitteleinzelhandel - Konzeption und Durchfuehrung einer GIS-gestuetzten Analyse der Strukturen des Lebensmitteleinzelhandels und der Nahversorgung in Freiburg im Breisgau”. Projektbericht. Goettingen : GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universitaet Goettingen. http://webdoc.sub.gwdg.de/pub/mon/2015/5-wieland.pdf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | data(Freiburg1)
data(Freiburg2)
data(Freiburg3)
# Loads the data
huff_mat <- huff.shares (Freiburg1, "district", "store", "salesarea", "distance")
# Market area estimation using the Huff Model with standard parameters
# (gamma = 1, lambda = -2)
huff_mat_pp <- merge (huff_mat, Freiburg2)
# Adding the purchasing power data for the city districts
huff_total <- shares.total (huff_mat_pp, "district", "store", "p_ij", "ppower")
# Total expected sales and shares
huff_total_control <- merge (huff_total, Freiburg3, by.x = "suppliers_single",
by.y = "store")
model.fit(huff_total_control$annualsales, huff_total_control$sum_E_j, plotVal = TRUE)
|
$resids_sq_sum
[1] 2.125162e+15
$pseudorsq
[1] 0.5128422
$globerr
[1] 0.5210329
$mape
[1] 0.6383766
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.