Description Usage Arguments Details Value Author(s) References See Also Examples
This function calculates (local) market shares based on specified explanatory variables and their weighting parameters in a given MCI interaction matrix.
1 | mci.shares(mcidataset, submarkets, suppliers, ..., mcitrans = "lc", interc = NULL)
|
mcidataset |
an interaction matrix which is a |
submarkets |
the column in the interaction matrix |
suppliers |
the column in the interaction matrix |
... |
the column(s) of the explanatory variable(s) (at least one), numeric and positive (or dummy [1,0]), and their weighting parameter(s). The parameter(s) must follow the particular variable(s): |
mcitrans |
defines if the regular multiplicative formula is used or the inverse log-centering transformation where the explanatory variables are MCI-transformed and linked by addition in an exponential function instead of multiplication. This transformation is necessary if an intercept is included in the model and/or if dummy variables are used as explanatories (default: |
interc |
if |
In this function, the input dataset (MCI interaction matrix) is used for a calculation of (local) market shares (p_{ij}), based on (at least one) given explanatory variable(s) and (a) given weighting parameter(s). If an intercept is included in the model and/or if dummy variables are used as explanatories, the inverse log-centering transformation by Nakanishi/Cooper (1982) has to be used for simulations (mcitrans = "ilc"
).
The function mci.shares()
returns the input interaction matrix (data.frame
) with new variables/columns, where the last one (p_ij
) is the one of interest, containing the (local) market shares of the j suppliers in the i submarkets (p_{ij}).
Thomas Wieland
Huff, D. L./Batsell, R. R. (1975): “Conceptual and Operational Problems with Market Share Models of Consumer Spatial Behavior”. In: Advances in Consumer Research, 2, p. 165-172.
Huff, D. L./McCallum, D. (2008): “Calibrating the Huff Model Using ArcGIS Business Analyst”. ESRI White Paper, September 2008. https://www.esri.com/library/whitepapers/pdfs/calibrating-huff-model.pdf
Nakanishi, M./Cooper, L. G. (1974): “Parameter Estimation for a Multiplicative Competitive Interaction Model - Least Squares Approach”. In: Journal of Marketing Research, 11, 3, p. 303-311.
Nakanishi, M./Cooper, L. G. (1982): “Simplified Estimation Procedures for MCI Models”. In: Marketing Science, 1, 3, p. 314-322.
Wieland, T. (2013): “Einkaufsstaettenwahl, Einzelhandelscluster und raeumliche Versorgungsdisparitaeten - Modellierung von Marktgebieten im Einzelhandel unter Beruecksichtigung von Agglomerationseffekten”. In: Schrenk, M./Popovich, V./Zeile, P./Elisei, P. (eds.): REAL CORP 2013. Planning Times. Proceedings of 18th International Conference on Urban Planning, Regional Development and Information Society. Schwechat. p. 275-284. http://www.corp.at/archive/CORP2013_98.pdf
Wieland, T. (2015): “Raeumliches Einkaufsverhalten und Standortpolitik im Einzelhandel unter Beruecksichtigung von Agglomerationseffekten. Theoretische Erklaerungsansaetze, modellanalytische Zugaenge und eine empirisch-oekonometrische Marktgebietsanalyse anhand eines Fallbeispiels aus dem laendlichen Raum Ostwestfalens/Suedniedersachsens”. Geographische Handelsforschung, 23. 289 pages. Mannheim : MetaGIS.
mci.fit
, mci.transmat
, mci.transvar
, shares.total
1 2 3 4 5 6 7 8 9 10 11 12 | data(Freiburg1)
data(Freiburg2)
# Loads the data
mynewmatrix <- mci.shares(Freiburg1, "district", "store", "salesarea", 1, "distance", -2)
# Calculating shares based on two attractivity/utility variables
mynewmatrix_alldata <- merge(mynewmatrix, Freiburg2)
# Merge interaction matrix with district data (purchasing power)
shares.total (mynewmatrix_alldata, "district", "store", "p_ij", "ppower")
# Calculation of total sales
|
suppliers_single sum_E_j share_j
1 1 4057591 0.010759819
2 10 5809861 0.015406444
3 11 1289847 0.003420383
4 12 7103210 0.018836115
5 13 3476313 0.009218400
6 14 7264438 0.019263657
7 15 7667744 0.020333134
8 16 5836249 0.015476420
9 17 2093917 0.005552598
10 18 3717873 0.009858963
11 19 1836516 0.004870028
12 2 4163924 0.011041789
13 20 7193956 0.019076753
14 21 4587982 0.012166296
15 22 7219367 0.019144137
16 23 3511346 0.009311301
17 24 7529751 0.019967205
18 25 8959078 0.023757460
19 26 18002697 0.047739105
20 27 3118085 0.008268460
21 28 3247581 0.008611856
22 29 21478569 0.056956335
23 3 6936748 0.018394695
24 30 5087282 0.013490329
25 31 6333310 0.016794514
26 32 2555499 0.006776608
27 33 3659372 0.009703833
28 34 3660671 0.009707275
29 35 2439080 0.006467893
30 36 5843828 0.015496517
31 37 3687732 0.009779035
32 38 3329573 0.008829279
33 39 1412032 0.003744392
34 4 3890181 0.010315885
35 40 4837267 0.012827345
36 41 2996955 0.007947250
37 42 1747369 0.004633629
38 43 1307060 0.003466029
39 44 6414607 0.017010096
40 45 20704568 0.054903858
41 46 22209552 0.058894739
42 47 9658730 0.025612779
43 48 10347232 0.027438534
44 49 6232115 0.016526168
45 5 3272610 0.008678225
46 50 10234404 0.027139338
47 51 10456838 0.027729182
48 52 4877062 0.012932873
49 53 13217387 0.035049538
50 54 4402544 0.011674556
51 55 6433646 0.017060583
52 56 2437403 0.006463444
53 57 4097990 0.010866947
54 58 6495891 0.017225641
55 59 3502213 0.009287082
56 6 6880875 0.018246533
57 60 5747010 0.015239778
58 61 2760915 0.007321325
59 62 2458063 0.006518231
60 63 2860499 0.007585401
61 7 4027402 0.010679766
62 8 6245398 0.016561391
63 9 2241074 0.005942826
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.