Description Usage Format Source See Also Examples
The dataset contains a distance matrix (OD matrix: Origins-Destinations matrix) including the street distance and the travel time from the customer origins to the shopping destinations, both stored in the dataset shopping1
.
1 | data("shopping2")
|
A data frame with 3723 observations on the following 5 variables.
from
a factor containing the customer origin (place of residence) as internal code
to
a factor containing the shopping destination
d_km
a numeric vector containing the street distance from the origins to the destinations in km
d_time
a numeric vector containing the driving time from the origins to the destinations in km
route
a factor containing the interaction/route code between origins and destinations (from-to)
Primary empirical sources: POS (point of sale) survey in the authors' course (“Praktikum Empirische Sozialforschung: Stadtteilzentren als Einzelhandelsstandorte - Das Fallbeispiel Karlsruhe-Durlach”, Karlsruhe Institute of Technology, Institute for Geography and Geoecology, May 2016), own calculations
The street distance and travel time was calculated using the package ggmap.
shopping1
, shopping3
, shopping4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # Market area segmentation based on the POS survey in shopping1 #
data(shopping1)
# The survey dataset
data(shopping2)
# Dataset with distances and travel times
shopping1_adj <- shopping1[(shopping1$weekday != 3) & (shopping1$holiday != 1)
& (shopping1$survey != "pretest"),]
# Removing every case from tuesday, holidays and the ones belonging to the pretest
ijmatrix_POS <- ijmatrix.create(shopping1_adj, "resid_code", "POS", "POS_expen")
# Creates an interaction matrix based on the observed frequencies (automatically)
# and the POS expenditures (Variable "POS_expen" separately stated)
ijmatrix_POS_data <- merge(ijmatrix_POS, shopping2, by.x="interaction", by.y="route",
all.x = TRUE)
# Adding the distances and travel times
ijmatrix_POS_data_segm_visit <- shares.segm(ijmatrix_POS_data, "resid_code", "POS",
"d_time", "freq_ij_abs", 0,10,20,30)
# Segmentation by travel time using the number of customers/visitors
# Parameters: interaction matrix (data frame), columns with origins and destinations,
# variable to divide in classes, absolute frequencies/expenditures, class segments
ijmatrix_POS_data_segm_exp <- shares.segm(ijmatrix_POS_data, "resid_code", "POS",
"d_time", "freq_ij_abs_POS_expen", 0,10,20,30)
# Segmentation by travel time using the POS expenditures
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.