Description Usage Format Source See Also Examples
The dataset contains information about
1 | data("shopping3")
|
A data frame with 70 observations on the following 5 variables.
resid_name
a factor containing the customer origin (place of residence) as name of the corresponding city or city district
resid_name_offical
a factor containing the customer origin (place of residence) as official names of the corresponding city or city district
resid_pop2015
a numeric vector containing the population size of the area
KA_east
a numeric vector containing a dummy variable indicating whether the area belongs to the east of Karlsruhe or not
resid_code
a factor containing the customer origin (place of residence) as internal code
Primary empirical sources: POS (point of sale) survey in the authors' course (“Praktikum Empirische Sozialforschung: Stadtteilzentren als Einzelhandelsstandorte - Das Fallbeispiel Karlsruhe-Durlach”, Karlsruhe Institute of Technology, Institute for Geography and Geoecology, May 2016), own calculations
Stadt Karlsruhe, Amt fuer Stadtentwicklung (2016): “Die Karlsruher Bevoelkerung im Dezember 2015”. Stadt Karlsruhe.
shopping1
, shopping2
, shopping4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | # Market area analysis based on the POS survey in shopping1 #
data(shopping1)
# The survey dataset
data(shopping2)
# Dataset with distances and travel times
shopping1_adj <- shopping1[(shopping1$weekday != 3) & (shopping1$holiday != 1)
& (shopping1$survey != "pretest"),]
# Removing every case from tuesday, holidays and the ones belonging to the pretest
ijmatrix_POS <- ijmatrix.create(shopping1_adj, "resid_code", "POS", "POS_expen")
# Creates an interaction matrix based on the observed frequencies (automatically)
# and the POS expenditures (Variable "POS_expen" separately stated)
ijmatrix_POS_data <- merge(ijmatrix_POS, shopping2, by.x="interaction", by.y="route",
all.x = TRUE)
# Adding the distances and travel times
ijmatrix_POS_data$freq_ij_abs_cor <- var.correct(ijmatrix_POS_data$freq_ij_abs,
corr.mode = "inc", incby = 0.1)
# Correcting the absolute values (frequencies) by increasing by 0.1
data(shopping3)
ijmatrix_POS_data_residdata <- merge(ijmatrix_POS_data, shopping3)
# Adding the information about the origins (places of residence) stored in shopping3
ijmatrix_POS_data_residdata$visitper1000 <- (ijmatrix_POS_data_residdata$
freq_ij_abs_cor/ijmatrix_POS_data_residdata$resid_pop2015)*1000
# Calculating the dependent variable
# visitper1000: surveyed customers per 1.000 inhabitants of the origin
ijmatrix_POS_data_residdata <-
ijmatrix_POS_data_residdata[(!is.na(ijmatrix_POS_data_residdata$
visitper1000)) & (!is.na(ijmatrix_POS_data_residdata$d_time)),]
# Removing NAs (data for some outlier origins and routes not available)
ijmatrix_POS_data_residdata_POS1 <-
ijmatrix_POS_data_residdata[ijmatrix_POS_data_residdata$POS=="POS1",]
# Dataset for POS1 (town centre)
ijmatrix_POS_data_residdata_POS2 <-
ijmatrix_POS_data_residdata[ijmatrix_POS_data_residdata$POS=="POS2",]
# Dataset for POS2 (out-of-town shopping centre)
huff.decay(ijmatrix_POS_data_residdata_POS1, "d_km", "visitper1000")
huff.decay(ijmatrix_POS_data_residdata_POS1, "d_time", "visitper1000")
huff.decay(ijmatrix_POS_data_residdata_POS2, "d_km", "visitper1000")
huff.decay(ijmatrix_POS_data_residdata_POS2, "d_time", "visitper1000")
|
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared
1 Linear 0.7354 2e-04 -0.0455 0.0038 0.216 0.1936
2 Power 1.9121 0.4434 -1.5267 2e-04 0.333 0.3139
3 Exponential 0.2788 0.0222 -0.1353 0.0044 0.2092 0.1866
4 Logistic 1.6999 0.0164 0.1823 0.0026 0.2311 0.2092
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared
1 Linear 1.2112 0 -0.0585 1e-04 0.3516 0.3331
2 Power 34.6019 0.0289 -2.2968 3e-04 0.3211 0.3017
3 Exponential 0.691 0.6322 -0.1432 0.0027 0.23 0.208
4 Logistic 0.2659 0.7795 0.2058 6e-04 0.2893 0.2689
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared
1 Linear 0.6734 0 -0.0316 7e-04 0.2812 0.2606
2 Power 5.7372 0.0348 -1.5978 0 0.3863 0.3688
3 Exponential 0.9161 0.8318 -0.1605 0 0.4086 0.3917
4 Logistic -0.4868 0.4212 0.2043 1e-04 0.3444 0.3256
Model type Intercept p Intercept Slope p Slope R-Squared Adj. R-squared
1 Linear 0.9353 0 -0.0411 1e-04 0.3706 0.3526
2 Power 213.9932 7e-04 -2.7363 0 0.4213 0.4048
3 Exponential 2.3946 0.14 -0.184 0 0.4191 0.4025
4 Logistic -1.8572 0.031 0.2441 0 0.3835 0.3659
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.