Description Usage Arguments Details Value Author(s) References See Also Examples
This function optimizes the attraction values of suppliers/location in a given Huff interaction matrix to fit empirically observed total values (e.g. annual sales) and calculates market shares/market areas
1 2 3 4 5 6 | huff.attrac(huffdataset, origins, locations, attrac, dist,
lambda = -2, dtype = "pow", lambda2 = NULL,
localmarket_dataset, origin_id, localmarket,
location_dataset, location_id, location_total,
tolerance = 5, output = "matrix", show_proc = FALSE,
check_df = TRUE)
|
huffdataset |
an interaction matrix which is a |
origins |
the column in the interaction matrix |
locations |
the column in the interaction matrix |
attrac |
the column in the interaction matrix |
dist |
the column in the interaction matrix |
lambda |
a single numeric value of λ for the (exponential) weighting of distance (transport costs, default: -2) |
dtype |
Type of distance weighting function: |
lambda2 |
if |
localmarket_dataset |
A |
origin_id |
the column in the dataset |
localmarket |
the column in the dataset |
location_dataset |
A |
location_id |
the column in the dataset |
location_total |
the column in the dataset |
tolerance |
accepted value of absolute percentage error between observed (T_{j,obs}) and modeled total values (T_{j,exp}) to skip a local optimization of location/supplier j |
output |
Type of function output: |
show_proc |
logical argument that indicates if the function prints messages about the state of process during the work (e.g. “Processing variable xyz ...” or “Variable xyz is regarded as dummy variable”). Default: |
check_df |
logical argument that indicates if the given dataset is checked for correct input, only for internal use, should not be deselected (default: |
In many cases, only total empirical values of the suppliers/locations can be used for market area estimation. This function fits the Huff model not by estimating the parameters but by optimizing the attraction variable (transport cost weighting by λ is given) using an optimization algorithm based on the idea of the local optimization of attraction algorithm developed by Guessefeldt (2002) and other model fit approaches. This function consists of a single optimization of every supplier/location. Note that the best results can be achieved by repeating the algorithm while evaluating the results (see the function huff.fit()
, which extends this algorithm to a given number of iterations).
The function output can be controlled by the function argument output
. If output = "matrix"
the function returns a Huff interaction matrix with the optimized attraction values and the expected market shares/market areas. If output = "total"
, the old (observed) and the new (expected) total values are returned. If output = "attrac"
, the optimized attraction values are returned. All results are data.frame
.
Thomas Wieland
Guessefeldt, J. (2002): “Zur Modellierung von raeumlichen Kaufkraftstroemen in unvollkommenen Maerkten”. In: Erdkunde, 56, 4, p. 351-370.
Wieland, T. (2015): “Nahversorgung im Kontext raumoekonomischer Entwicklungen im Lebensmitteleinzelhandel - Konzeption und Durchfuehrung einer GIS-gestuetzten Analyse der Strukturen des Lebensmitteleinzelhandels und der Nahversorgung in Freiburg im Breisgau”. Projektbericht. Goettingen : GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universitaet Goettingen. http://webdoc.sub.gwdg.de/pub/mon/2015/5-wieland.pdf
huff.fit
, huff.shares
, huff.decay
1 2 3 4 5 6 7 8 9 10 11 | data(Freiburg1)
data(Freiburg2)
data(Freiburg3)
# Loading the three Freiburg datasets
# NOTE: This may take a while!
# huff.attrac(Freiburg1, "district", "store", "salesarea", "distance", lambda = -2, dtype= "pow",
# lambda2 = NULL, Freiburg2, "district", "ppower", Freiburg3, "store", "annualsales",
# tolerance = 5, output = "total")
# Local optimization of store attraction using the function huff.attrac()
# returns a data frame with total values (observed and expected after optimization)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.