R/MCMChpoisson.R

##########################################################################
## MCMChpoisson.R
##
## MCMChpoisson() samples from the posterior distribution of a
## Poisson hierarchical linear regression model in R using linked C++
## code in Scythe
##
## The code uses Algorithm 2 of Chib & Carlin (1999) for efficient
## inference of (\beta | Y, sigma^2, Vb).
##
## Chib, S. & Carlin, B. P. (1999) On MCMC sampling in hierarchical
## longitudinal models, Statistics and Computing, 9, 17-26
##
####################################################################
##
## Original code by Ghislain Vieilledent, may 2011
## CIRAD UR B&SEF
## ghislain.vieilledent@cirad.fr / ghislainv@gmail.com
##
####################################################################
##
## The initial version of this file was generated by the
## auto.Scythe.call() function in the MCMCpack R package
## written by:
##
## Andrew D. Martin
## Dept. of Political Science
## Washington University in St. Louis
## admartin@wustl.edu
##
## Kevin M. Quinn
## Dept. of Government
## Harvard University
## kevin_quinn@harvard.edu
##
## This software is distributed under the terms of the GNU GENERAL
## PUBLIC LICENSE Version 2, June 1991.  See the package LICENSE
## file for more information.
##
## Copyright (C) 2011 Andrew D. Martin and Kevin M. Quinn
##
####################################################################
##
## Revisions:
## - G. Vieilledent, May 9 2011 [initial file]
##
####################################################################


#' Markov Chain Monte Carlo for the Hierarchical Poisson Linear Regression
#' Model using the log link function
#'
#' MCMChpoisson generates a sample from the posterior distribution of a
#' Hierarchical Poisson Linear Regression Model using the log link function and
#' Algorithm 2 of Chib and Carlin (1999). This model uses a multivariate Normal
#' prior for the fixed effects parameters, an Inverse-Wishart prior on the
#' random effects variance matrix, and an Inverse-Gamma prior on the variance
#' modelling over-dispersion. The user supplies data and priors, and a sample
#' from the posterior distribution is returned as an mcmc object, which can be
#' subsequently analyzed with functions provided in the coda package.
#'
#'
#' \code{MCMChpoisson} simulates from the posterior distribution sample using
#' the blocked Gibbs sampler of Chib and Carlin (1999), Algorithm 2. The
#' simulation is done in compiled C++ code to maximize efficiency. Please
#' consult the coda documentation for a comprehensive list of functions that
#' can be used to analyze the posterior sample.
#'
#' The model takes the following form:
#'
#' \deqn{y_i \sim \mathcal{P}oisson(\lambda_i)}
#'
#' With latent variables \eqn{\phi(\lambda_i)}, \eqn{\phi} being the
#' log link function:
#'
#' \deqn{\phi(\lambda_i) = X_i \beta + W_i b_i + \varepsilon_i}
#'
#' Where each group \eqn{i} have \eqn{k_i} observations.
#'
#' Where the random effects:
#'
#' \deqn{b_i \sim \mathcal{N}_q(0,V_b)}
#'
#' And the over-dispersion terms:
#'
#' \deqn{\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I_{k_i})}
#'
#' We assume standard, conjugate priors:
#'
#' \deqn{\beta \sim \mathcal{N}_p(\mu_{\beta},V_{\beta})}
#'
#' And:
#'
#' \deqn{\sigma^{2} \sim \mathcal{IG}amma(\nu, 1/\delta)}
#'
#' And:
#'
#' \deqn{V_b \sim \mathcal{IW}ishart(r, rR)} See Chib and Carlin (1999) for more
#' details.
#'
#' \emph{NOTE:} We do not provide default parameters for the priors on the
#' precision matrix for the random effects. When fitting one of these models,
#' it is of utmost importance to choose a prior that reflects your prior
#' beliefs about the random effects. Using the \code{dwish} and \code{rwish}
#' functions might be useful in choosing these values.
#'
#' @param fixed A two-sided linear formula of the form 'y~x1+...+xp' describing
#' the fixed-effects part of the model, with the response on the left of a '~'
#' operator and the p fixed terms, separated by '+' operators, on the right.
#' Response variable y must be 0 or 1 (Binomial process).
#'
#' @param random A one-sided formula of the form '~x1+...+xq' specifying the
#' model for the random effects part of the model, with the q random terms,
#' separated by '+' operators.
#'
#' @param group String indicating the name of the grouping variable in
#' \code{data}, defining the hierarchical structure of the model.
#'
#' @param data A data frame containing the variables in the model.
#'
#' @param burnin The number of burnin iterations for the sampler.
#'
#' @param mcmc The number of Gibbs iterations for the sampler. Total number of
#' Gibbs iterations is equal to \code{burnin+mcmc}. \code{burnin+mcmc} must be
#' divisible by 10 and superior or equal to 100 so that the progress bar can be
#' displayed.
#'
#' @param thin The thinning interval used in the simulation. The number of mcmc
#' iterations must be divisible by this value.
#'
#' @param seed The seed for the random number generator. If NA, the Mersenne
#' Twister generator is used with default seed 12345; if an integer is passed
#' it is used to seed the Mersenne twister.
#'
#' @param verbose A switch (0,1) which determines whether or not the progress
#' of the sampler is printed to the screen. Default is 1: a progress bar is
#' printed, indicating the step (in \%) reached by the Gibbs sampler.
#'
#' @param beta.start The starting values for the \eqn{\beta} vector. This
#' can either be a scalar or a p-length vector. The default value of NA will
#' use the OLS \eqn{\beta} estimate of the corresponding Gaussian Linear
#' Regression without random effects. If this is a scalar, that value will
#' serve as the starting value mean for all of the betas.
#'
#' @param sigma2.start Scalar for the starting value of the residual error
#' variance. The default value of NA will use the OLS estimates of the
#' corresponding Gaussian Linear Regression without random effects.
#'
#' @param Vb.start The starting value for variance matrix of the random
#' effects. This must be a square q-dimension matrix. Default value of NA uses
#' an identity matrix.
#'
#' @param mubeta The prior mean of \eqn{\beta}. This can either be a
#' scalar or a p-length vector. If this takes a scalar value, then that value
#' will serve as the prior mean for all of the betas. The default value of 0
#' will use a vector of zeros for an uninformative prior.
#'
#' @param Vbeta The prior variance of \eqn{\beta}.  This can either be a
#' scalar or a square p-dimension matrix. If this takes a scalar value, then
#' that value times an identity matrix serves as the prior variance of beta.
#' Default value of 1.0E6 will use a diagonal matrix with very large variance
#' for an uninformative flat prior.
#'
#' @param r The shape parameter for the Inverse-Wishart prior on variance
#' matrix for the random effects. r must be superior or equal to q. Set r=q for
#' an uninformative prior. See the NOTE for more details.
#'
#' @param R The scale matrix for the Inverse-Wishart prior on variance matrix
#' for the random effects. This must be a square q-dimension matrix. Use
#' plausible variance regarding random effects for the diagonal of R. See the
#' NOTE for more details.
#'
#' @param nu The shape parameter for the Inverse-Gamma prior on the residual
#' error variance. Default value is \code{nu=delta=0.001} for uninformative
#' prior.
#'
#' @param delta The rate (1/scale) parameter for the Inverse-Gamma prior on the
#' residual error variance. Default value is \code{nu=delta=0.001} for
#' uninformative prior.
#'
#' @param FixOD A switch (0,1) which determines whether or not the variance for
#' over-dispersion (sigma2) should be fixed (1) or not (0). Default is 0,
#' parameter sigma2 is estimated. If FixOD=1, sigma2 is fixed to the value
#' provided for \code{sigma2.start}.
#'
#' @param ... further arguments to be passed
#'
#' @return
#'
#' \item{mcmc}{An mcmc object that contains the posterior sample. This
#' object can be summarized by functions provided by the coda
#' package. The posterior sample of the deviance \eqn{D}, with
#' \eqn{D=-2\log(\prod_i P(y_i|\lambda_i))}, is also provided.}
#'
#' \item{lambda.pred}{Predictive posterior mean for the exponential of
#' the latent variables. The approximation of Diggle et al. (2004) is
#' used to marginalized with respect to over-dispersion terms:
#'
#' \deqn{E[\lambda_i|\beta,b_i,\sigma^2]=\phi^{-1}((X_i \beta+W_i b_i)+0.5 \sigma^2)}}
#'
#' @export
#'
#' @author Ghislain Vieilledent <ghislain.vieilledent@@cirad.fr>
#'
#' @seealso \code{\link[coda]{plot.mcmc}}, \code{\link[coda]{summary.mcmc}}
#'
#' @references Siddhartha Chib and Bradley P. Carlin. 1999. ``On MCMC Sampling
#' in Hierarchical Longitudinal Models.'' \emph{Statistics and Computing.} 9:
#' 17-26.
#'
#' Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin.  2007.  \emph{Scythe
#' Statistical Library 1.0.} \url{http://scythe.lsa.umich.edu}.
#'
#' Andrew D. Martin and Kyle L. Saunders. 2002. ``Bayesian Inference for
#' Political Science Panel Data.'' Paper presented at the 2002 Annual Meeting
#' of the American Political Science Association.
#'
#' Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. 2006.  ``Output
#' Analysis and Diagnostics for MCMC (CODA)'', \emph{R News}. 6(1): 7-11.
#' \url{https://CRAN.R-project.org/doc/Rnews/Rnews_2006-1.pdf}.
#'
#' @keywords models hierarchical models mixed models glmm Poisson MCMC bayesian
#'
#' @examples
#'
#' \dontrun{
#' #========================================
#' # Hierarchical Poisson Linear Regression
#' #========================================
#'
#' #== Generating data
#'
#' # Constants
#' nobs <- 1000
#' nspecies <- 20
#' species <- c(1:nspecies,sample(c(1:nspecies),(nobs-nspecies),replace=TRUE))
#'
#' # Covariates
#' X1 <- runif(n=nobs,min=-1,max=1)
#' X2 <- runif(n=nobs,min=-1,max=1)
#' X <- cbind(rep(1,nobs),X1,X2)
#' W <- X
#'
#' # Target parameters
#' # beta
#' beta.target <- matrix(c(0.1,0.1,0.1),ncol=1)
#' # Vb
#' Vb.target <- c(0.05,0.05,0.05)
#' # b
#' b.target <- cbind(rnorm(nspecies,mean=0,sd=sqrt(Vb.target[1])),
#'                   rnorm(nspecies,mean=0,sd=sqrt(Vb.target[2])),
#'                   rnorm(nspecies,mean=0,sd=sqrt(Vb.target[3])))
#'
#' # Response
#' lambda <- vector()
#' Y <- vector()
#' for (n in 1:nobs) {
#'   lambda[n] <- exp(X[n,]%*%beta.target+W[n,]%*%b.target[species[n],])
#'   Y[n] <- rpois(1,lambda[n])
#' }
#'
#' # Data-set
#' Data <- as.data.frame(cbind(Y,lambda,X1,X2,species))
#' plot(Data$X1,Data$lambda)
#'
#' #== Call to MCMChpoisson
#' model <- MCMChpoisson(fixed=Y~X1+X2, random=~X1+X2, group="species",
#'               data=Data, burnin=5000, mcmc=1000, thin=1,verbose=1,
#'               seed=NA, beta.start=0, sigma2.start=1,
#'               Vb.start=1, mubeta=0, Vbeta=1.0E6,
#'               r=3, R=diag(c(0.1,0.1,0.1)), nu=0.001, delta=0.001, FixOD=1)
#'
#' #== MCMC analysis
#'
#' # Graphics
#' pdf("Posteriors-MCMChpoisson.pdf")
#' plot(model$mcmc)
#' dev.off()
#'
#' # Summary
#' summary(model$mcmc)
#'
#' # Predictive posterior mean for each observation
#' model$lambda.pred
#'
#' # Predicted-Observed
#' plot(Data$lambda,model$lambda.pred)
#' abline(a=0,b=1)
#'
#' ## #Not run
#' ## #You can also compare with lme4 results
#' ## #== lme4 resolution
#' ## library(lme4)
#' ## model.lme4 <- lmer(Y~X1+X2+(1+X1+X2|species),data=Data,family="poisson")
#' ## summary(model.lme4)
#' ## plot(fitted(model.lme4),model$lambda.pred,main="MCMChpoisson/lme4")
#' ## abline(a=0,b=1)
#' }
#'
MCMChpoisson <- function (fixed, random, group, data, burnin=5000,
                          mcmc=10000, thin=10,
                          verbose=1, seed=NA, beta.start=NA, sigma2.start=NA,
                          Vb.start=NA, mubeta=0, Vbeta=1.0E6, r, R,
                          nu=0.001, delta=0.001, FixOD=0, ...)
{

  #========
  # Basic checks
  #========
  check.group.hmodels(group, data)
  check.mcmc.parameters.hmodels(burnin, mcmc, thin)
  check.verbose.hmodels(verbose)
  check.FixOD.hmodels(FixOD)
  check.offset(list(...))

  #========
  # Seed
  #========
  seed <- form.seeds.hmodels(seed)

  #========
  # Form response and model matrices
  #========
  mf.fixed <- model.frame(formula=fixed,data=data)
  X <- model.matrix(attr(mf.fixed,"terms"),data=mf.fixed)
  Y <- model.response(mf.fixed)
  check.Y.Poisson.hmodels(Y)
  mf.random <- model.frame(formula=random,data=data)
  W <- model.matrix(attr(mf.random,"terms"),data=mf.random)

  #========
  # Model parameters
  #========
  nobs <- nrow(X)
  IdentGroup <- as.numeric(as.factor(as.character(data[,names(data)==as.character(group)])))-1
  LevelsGroup <- sort(unique(IdentGroup+1))
  LevelsGroup.Name <- sort(unique(as.character(data[,names(data)==as.character(group)])))
  ngroup <- length(LevelsGroup)
  np <- ncol(X)
  nq <- ncol(W)
  ngibbs <- mcmc+burnin
  nthin <- thin
  nburn <- burnin
  nsamp <- mcmc/thin

  #========
  # Form and check starting parameters
  #========
  beta.start <- form.beta.start.hmodels(fixed,data,beta.start,np,family="poisson",defaults=NA)
  sigma2.start <- form.sigma2.start.hmodels(fixed,data,sigma2.start,family="poisson")
  Vb.start <- form.Vb.start.hmodels(Vb.start,nq)

  #========
  # Form priors
  #========
  mvn.prior <- form.mvn.prior.hmodels(mubeta,Vbeta,np)
  mubeta <- mvn.prior[[1]]
  Vbeta <- mvn.prior[[2]]
  wishart.prior <- form.wishart.prior.hmodels(r,R,nq)
  r <- wishart.prior[[1]]
  R <- wishart.prior[[2]]
  check.ig.prior.hmodels(nu,delta)
  s1 <- nu
  s2 <- delta

  #========
  # Parameters to save
  #========
  beta_vect <- rep(c(beta.start),each=nsamp)
  Vb_vect <- rep(c(Vb.start),each=nsamp)
  b_vect <- rep(0,nq*ngroup*nsamp)
  V <- rep(sigma2.start,nsamp)
  lambda_pred <- rep(0.5,nobs)
  Deviance <- rep(0,nsamp)

  #========
  # call C++ code to draw sample
  #========
  Sample <- .C("cMCMChpoisson",
               #= Constants and data
               ngibbs=as.integer(ngibbs), nthin=as.integer(nthin), nburn=as.integer(nburn),## Number of iterations, burning and samples
               nobs=as.integer(nobs), ngroup=as.integer(ngroup), ## Constants
               np=as.integer(np), nq=as.integer(nq), ## Constants
               IdentGroup=as.integer(IdentGroup),
               Y_vect=as.double(c(Y)), ## Response variable
               X_vect=as.double(c(X)), ## Covariates
               W_vect=as.double(c(W)), ## Covariates
               #= Parameters to save
               beta_vect.nonconst=as.double(beta_vect), ## Fixed parameters of the regression
               b_vect.nonconst=as.double(b_vect), ## Random effects on intercept and slope
               Vb_vect.nonconst=as.double(Vb_vect), ## Variance-covariance of random effects
               V.nonconst=as.double(V), ## Variance of residuals
               #= Defining priors
               mubeta_vect=as.double(c(mubeta)), Vbeta_vect=as.double(c(Vbeta)),
               r=as.double(r), R_vect=as.double(c(R)),
               s1_V=as.double(s1), s2_V=as.double(s2),
               #= Diagnostic
               Deviance.nonconst=as.double(Deviance),
               lambda_pred.nonconst=as.double(lambda_pred), ## Predictive posterior mean
               #= Seeds
               seed=as.integer(seed),
               #= Verbose
               verbose=as.integer(verbose),
               #= Overdispersion
               FixOD=as.integer(FixOD),
               PACKAGE="MCMCpack")

  #= Matrix of MCMC samples
  Matrix <- matrix(NA,nrow=nsamp,ncol=np+nq*ngroup+nq*nq+2)
  names.fixed <- paste("beta.",colnames(X),sep="")
  names.random <- paste("b.",rep(colnames(W),each=ngroup),".",rep(LevelsGroup.Name,nq),sep="")
  names.variances <- c(paste("VCV.",colnames(W),".",rep(colnames(W),each=nq),sep=""),"sigma2")
  colnames(Matrix) <- c(names.fixed,names.random,names.variances,"Deviance")

  #= Filling-in the matrix
  Matrix[,c(1:np)] <- matrix(Sample[[12]],ncol=np)
  Matrix[,c((np+1):(np+nq*ngroup))] <- matrix(Sample[[13]],ncol=nq*ngroup)
  Matrix[,c((np+nq*ngroup+1):(np+nq*ngroup+nq*nq))] <- matrix(Sample[[14]],ncol=nq*nq)
  Matrix[,ncol(Matrix)-1] <- Sample[[15]]
  Matrix[,ncol(Matrix)] <- Sample[[22]]

  #= Transform Sample list in an MCMC object
  MCMC <- mcmc(Matrix,start=nburn+1,end=ngibbs,thin=nthin)

  #= Output
  return (list(mcmc=MCMC,lambda.pred=Sample[[23]]))
}

####################################################################
## END
####################################################################

Try the MCMCpack package in your browser

Any scripts or data that you put into this service are public.

MCMCpack documentation built on April 13, 2022, 5:16 p.m.