MetaDE.ES: Identify differentially expressed genes by combining effect...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/meta_analysis03282012.r

Description

Function to fit the meta-analytic fixed- and random-effects models.The data consists of effect sizes and corresponding variances from your own method/calculations.

Usage

1
MetaDE.ES(x, meta.method = c("FEM", "REM"))

Arguments

x

a list with components.

  • ES: The observed effect sizes.

  • Var: The observed variances corresponding to ES

  • perm.ES: The effect sizes calculated from permutations, perm.ES is NULL if the argument nperm is set as NULL.

  • perm.Var: The corresponding variances calculated from permutations. perm.Var is NULL if the argument nperm is set as NULL.

meta.method

a character string specifying whether a fixed- or a random/mixed-effects model should be fitted. A fixed-effects model is fitted when using meta.method="FEM". Random-effects model is fitted by setting meta.method equal to "REM". See "Details".

Details

The function can be used to combine any of the usual effect size used in meta-analysis,such as standardized mean differences.Simply specify the observed effect sizes via the x\$ES and the corresponding variances vis x\$Var. If the effect sizes and corresponding varicances calculated from permutation are available,then specify them by x\$perm.ES and x\$perm.Var, respectively.

The argument paired is a vecter of logical values to specify whethe the corresponding study is paired design or not. If the study is pair-designed, the effect sizes (corresponding variances) are calcualted using the formula in morris's paper, otherwise calculated using the formulas in choi et al.

In addition, if the components of x, perm.ES and perm.Var, are not "NULL", the p-values are calculated using permutation method, otherwise, the p-values are calculated using parametric method by assupming the z-scores following a standard normal distribution.

Value

The object is a list containing the following components:

zval

test statistics of the aggregated value.

pval

p-values for the test statistics.

FDR

A matrix with one column which has the corrected p-values using Benjamini and Hochberg method (see references).

Qval

test statistics for the test of heterogeneity.

Qpval

p-values for the test of heterogeneity.

tau2

estimated amount of (residual) heterogeneity.

Author(s)

Jia Li and Xingbin Wang

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics,2003, i84-i90.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289:300.

See Also

ind.cal.ES

Examples

1
2
3
4
5
6
7
8
#---example 1: Meta analysis of Differentially expressed genes between two classes----------#
label1<-rep(0:1,each=5)
label2<-rep(0:1,each=5)
exp1<-cbind(matrix(rnorm(5*20),20,5),matrix(rnorm(5*20,2),20,5))
exp2<-cbind(matrix(rnorm(5*20),20,5),matrix(rnorm(5*20,1.5),20,5))
x<-list(list(exp1,label1),list(exp2,label2))
ind.res<-ind.cal.ES(x,paired=rep(FALSE,2),nperm=100)
MetaDE.ES(ind.res,meta.method='REM')

MetaDE documentation built on May 29, 2017, 9 a.m.