Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/utility03282012.r
a function to summary the number of DE genes at given p-value or FDR thresholds.
1  | count.DEnumber(result, p.cut, q.cut)
 | 
result | 
 A p-value matrix or an object file from metaDE.pvalue,metaDE.minMCC, metaDE.ES  | 
p.cut | 
 a numeric vecter to specify the p-value thresholds at which the DE number is counted.  | 
q.cut | 
 a numeric vecter to specify the FDR thresholds at which the DE number is counted.  | 
To count the DE number at FDR thresholds, the p-values were corrected by Benjamini-Hochberg procedure.
a list with components:
pval.table  | 
 a table contains the DE numbers counted at given p-value thresholds.  | 
FDR.table | 
 a table contains the DE numbers counted at given FDR thresholds.  | 
Jia Li and Xingbin Wang
Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995, 57(1):289-300.
1 2 3 4 5 6 7 8 9 10 11 12 13 14  | #---example 1: Meta analysis of Differentially expressed genes between two classes----------#
label1<-rep(0:1,each=5)
label2<-rep(0:1,each=5)
exp1<-cbind(matrix(rnorm(5*200),200,5),matrix(rnorm(5*200,2),200,5))
exp2<-cbind(matrix(rnorm(5*200),200,5),matrix(rnorm(5*200,1.5),200,5))
x<-list(list(exp1,label1),list(exp2,label2))
# here I used modt to generate p-values. 
DEgene<-ind.analysis(x,ind.method=rep("regt",2),tail="abs",nperm=100)
#--then you can use Fisher's method to combine the above p-values
res<-MetaDE.pvalue(DEgene,meta.method='Fisher')
draw.DEnumber(res,FDR=TRUE,maxcut=0.1)
count.DEnumber(res,p.cut=c(0.01,0.05),q.cut=c(0.01,0.05))
 | 
Loading required package: survival
Loading required package: impute
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colMeans, colSums, colnames,
    dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
    intersect, is.unsorted, lapply, lengths, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,
    rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which, which.max, which.min
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Loading required package: combinat
Attaching package: 'combinat'
The following object is masked from 'package:utils':
    combn
Loading required package: tools
dataset 1 is done
dataset 2 is done
$pval.table
       dataset1 dataset2 Fisher
p=0.01       67       54    128
p=0.05      152      111    177
$FDR.table
         dataset1 dataset2 Fisher
FDR=0.01        0        3    102
FDR=0.05      127       62    173
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.