Nothing
####################################################################
### ###
### Multivariate Contaminated Normal Mixture ###
### ###
####################################################################
#' Multivariate Contaminated Normal Mixture (MCNM)
#'
#' Carries out model-based clustering using a multivariate contaminated normal
#' mixture (MCNM). The function will determine itself if the data set is
#' complete or incomplete and fit the appropriate model accordingly. In the incomplete
#' case, the data set must be at least bivariate, and missing values are assumed to
#' be missing at random (MAR).
#'
#' @param X An \eqn{n} x \eqn{d} matrix or data frame where \eqn{n} is the number of
#' observations and \eqn{d} is the number of variables.
#' @param G An integer vector specifying the numbers of clusters, which must be at least 1.
#' @param criterion A character string indicating the information criterion for model
#' selection. "BIC" is used by default. See the details section for a list of available
#' information criteria.
#' @param max_iter (optional) A numeric value giving the maximum number of
#' iterations each EM algorithm is allowed to use; 20 by default.
#' @param epsilon (optional) A number specifying the epsilon value for the
#' Aitken-based stopping criterion used in the EM algorithm: 0.01 by default.
#' @param init_method (optional) A string specifying the method to initialize
#' the EM algorithm. "kmedoids" clustering is used by default. Alternative
#' methods include "kmeans", "hierarchical", "mclust", and "manual". When "manual" is chosen,
#' a vector \code{clusters} of length \eqn{n} must be specified. If the data set is
#' incomplete, missing values will be first filled based on the mean imputation method.
#' @param clusters (optional) A numeric vector of length \eqn{n} that specifies the initial
#' cluster memberships of the user when \code{init_method} is set to "manual".
#' This argument is NULL by default, so that it is ignored whenever other given
#' initialization methods are chosen.
#' @param eta_min (optional) A numeric value close to 1 to the right specifying
#' the minimum value of eta; 1.001 by default.
#' @param progress (optional) A logical value indicating whether the
#' fitting progress should be displayed; TRUE by default.
#'
#' @details Available information criteria include
#' \itemize{
#' \item AIC - Akaike information criterion
#' \item BIC - Bayesian information criterion
#' \item KIC - Kullback information criterion
#' \item KICc - Corrected Kullback information criterion
#' \item AIC3 - Modified AIC
#' \item CAIC - Bozdogan's consistent AIC
#' \item AICc - Small-sample version of AIC
#' \item ICL - Integrated Completed Likelihood criterion
#' \item AWE - Approximate weight of evidence
#' \item CLC - Classification likelihood criterion
#' }
#' @return An object of class \code{MixtureMissing} with:
#' \item{model}{The model used to fit the data set.}
#' \item{pi}{Mixing proportions.}
#' \item{mu}{Component location vectors.}
#' \item{Sigma}{Component dispersion matrices.}
#' \item{alpha}{Component proportions of good observations.}
#' \item{eta}{Component degrees of contamination.}
#' \item{z_tilde}{An \eqn{n} by \eqn{G} matrix where each row indicates the expected
#' probabilities that the corresponding observation belongs to each cluster.}
#' \item{v_tilde}{An \eqn{n} by \eqn{G} matrix where each row indicates the expected
#' probabilities that the corresponding observation is good with respect
#' to each cluster.}
#' \item{clusters}{A numeric vector of length \eqn{n} indicating cluster
#' memberships determined by the model.}
#' \item{outliers}{A logical vector of length \eqn{n} indicating observations that are outliers.}
#' \item{data}{The original data set if it is complete; otherwise, this is
#' the data set with missing values imputed by appropriate expectations.}
#' \item{complete}{An \eqn{n} by \eqn{d} logical matrix indicating which cells have no missing values.}
#' \item{npar}{The breakdown of the number of parameters to estimate.}
#' \item{max_iter}{Maximum number of iterations allowed in the EM algorithm.}
#' \item{iter_stop}{The actual number of iterations needed when fitting the
#' data set.}
#' \item{final_loglik}{The final value of log-likelihood.}
#' \item{loglik}{All the values of log-likelihood.}
#' \item{AIC}{Akaike information criterion.}
#' \item{BIC}{Bayesian information criterion.}
#' \item{KIC}{Kullback information criterion.}
#' \item{KICc}{Corrected Kullback information criterion.}
#' \item{AIC3}{Modified AIC.}
#' \item{CAIC}{Bozdogan's consistent AIC.}
#' \item{AICc}{Small-sample version of AIC.}
#' \item{ent}{Entropy.}
#' \item{ICL}{Integrated Completed Likelihood criterion.}
#' \item{AWE}{Approximate weight of evidence.}
#' \item{CLC}{Classification likelihood criterion.}
#' \item{init_method}{The initialization method used in model fitting.}
#'
#' @references
#' Punzo, A. and McNicholas, P.D., 2016. Parsimonious mixtures of multivariate
#' contaminated normal distributions. \emph{Biometrical Journal, 58}(6), pp.1506-1537. \cr \cr
#' Tong, H. and, Tortora, C., 2022. Model-based clustering and outlier detection
#' with missing data. \emph{Advances in Data Analysis and Classification}.
#'
#' @examples
#'
#' data('auto')
#'
#' #++++ With no missing values ++++#
#'
#' X <- auto[, c('engine_size', 'city_mpg', 'highway_mpg')]
#' mod <- MCNM(X, G = 2, init_method = 'kmedoids', max_iter = 10)
#'
#' summary(mod)
#' plot(mod)
#'
#' #++++ With missing values ++++#
#'
#' X <- auto[, c('normalized_losses', 'horsepower', 'highway_mpg', 'price')]
#' mod <- MCNM(X, G = 2, init_method = 'kmedoids', max_iter = 10)
#'
#' summary(mod)
#' plot(mod)
#'
#' @importFrom stats complete.cases cov cutree dist dnorm hclust kmeans
#' mahalanobis pchisq rmultinom runif var
#' @importFrom utils setTxtProgressBar txtProgressBar
#' @export
MCNM <- function(
X,
G,
criterion = c('BIC', 'AIC', 'KIC', 'KICc', 'AIC3', 'CAIC', 'AICc', 'ICL', 'AWE', 'CLC'),
max_iter = 20,
epsilon = 0.01,
init_method = c("kmedoids", "kmeans", "hierarchical", "mclust", "manual"),
clusters = NULL,
eta_min = 1.001,
progress = TRUE
) {
#----------------------#
# Input checking #
#----------------------#
if (is.data.frame(X)) {
X <- as.matrix(X)
}
if (!is.matrix(X)) {
X <- matrix(X, nrow = length(X), ncol = 1)
}
if (!is.numeric(X)) {
stop('X must be a numeric matrix, data frame or vector')
}
G <- unique(G)
if (any(G < 1)) {
stop('Number of clusters G must be at least 1')
}
if (any(G %% 1 != 0)) {
stop('Number of clusters G must be an integer')
}
#---------------------#
# Model Fitting #
#---------------------#
criterion <- match.arg(criterion)
best_info <- Inf
best_mod <- NULL
infos <- rep(NA_real_, length(G))
names(infos) <- G
if ( any(is.na(X)) ) {
if (ncol(X) < 2) {
stop('If X contains NAs, X must be at least bivariate')
}
if (progress) {
cat('\nMixture: Contaminated Normal (CN)\n')
cat('Data Set: Incomplete\n')
}
} else {
if (progress) {
cat('\nMixture: Contaminated Normal (CN)\n')
cat('Data Set: Complete\n')
}
}
init_method <- match.arg(init_method)
if (progress) {
cat('Initialization:', init_method, '\n\n')
}
if (length(G) > 1 & init_method == 'manual') {
stop('Mannual initialization can only be done if length(G) is 1')
}
G_vec <- G
iter <- 1
for (G in G_vec) {
#++++ Fit each model in G ++++#
if (progress) {
cat('Fitting G = ', G, sep = '')
}
if (any(is.na(X))) {
mod <- tryCatch({
MCNM_incomplete_data(
X = X,
G = G,
max_iter = max_iter,
epsilon = epsilon,
init_method = init_method,
clusters = clusters,
eta_min = eta_min,
progress = progress
)
}, error = function(err) { return(NULL) })
} else {
mod <- tryCatch({
MCNM_complete_data(
X = X,
G = G,
max_iter = max_iter,
epsilon = epsilon,
init_method = init_method,
clusters = clusters,
eta_min = eta_min,
progress = progress
)
}, error = function(err) { return(NULL) })
} # end if ( any(is.na(X)) )
#++++ Compare to the current best model ++++#
if (!is.null(mod)) {
infos[iter] <- mod[[criterion]]
if (best_info > infos[iter]) {
best_info <- infos[iter]
best_mod <- mod
}
}
#++++ Update progress ++++#
if (progress) {
if (is.null(mod)) {
cat(' was failed\n', sep = '')
} else {
cat(' was successful with ', mod$iter_stop, '/', max_iter, ' iterations\n', sep = '')
}
}
iter <- iter + 1
} # end for (G in G_vec)
if (progress) {
cat('\n')
}
#--------------------------------------------#
# Summarize Results and Prepare Output #
#--------------------------------------------#
if (progress) {
if (length(G_vec) > 1) {
if (sum(is.na(infos)) == length(G_vec)) {
cat('The best mixture model cannot be determined\n')
} else {
cat('According to ', criterion, ', the best mixture model is based on G = ', G_vec[which.min(infos)], sep = '')
}
cat('\nModel rank according to ', criterion, ':', sep = '')
infos <- sort(infos, na.last = TRUE)
for(j in 1:length(infos)){
cat('\n')
if (!is.na(infos[j])) {
cat(' ', j, '. G = ', names(infos)[j], ': ', round(infos[j], digits = 4), sep = '')
} else {
cat(' ', j, '. G = ', names(infos)[j], ': Failed', sep = '')
}
}
} else {
if (!is.na(infos)) {
cat('The fitted mixture model with G = ', G, ' has ', criterion, ' = ', infos, sep = '')
}
}
cat('\n\n')
}
return(mod)
}
############################################################################
### ###
### Multivariate Contaminated Normal Mixture for Incomplete Data ###
### ###
############################################################################
MCNM_incomplete_data <- function(
X,
G,
max_iter = 20,
epsilon = 0.01,
init_method = c("kmedoids", "kmeans", "hierarchical", "mclust", "manual"),
clusters = NULL,
eta_min = 1.001,
progress = TRUE
) {
#-------------------------------------#
# Objects for the ECM Algorithm #
#-------------------------------------#
n <- nrow(X)
d <- ncol(X)
do <- rowSums(!is.na(X))
R <- is.na(X)
M <- unique(R)
np <- nrow(M)
Im <- vector('list', np) # which observations with missing pattern j
for (j in 1:np) {
Im[[j]] <- which( apply(R, 1, function(r) all(r == M[j, ]) ) )
}
z <- matrix(NA_real_, nrow = n, ncol = G)
z_tilde <- matrix(NA_real_, nrow = n, ncol = G)
v_tilde <- matrix(NA_real_, nrow = n, ncol = G)
w_tilde <- matrix(NA_real_, nrow = n, ncol = G)
zw_tilde <- matrix(NA_real_, nrow = n, ncol = G)
X_tilde <- array(rep(X, G), dim = c(n, d, G))
Sigma_tilde <- array(NA_real_, dim = c(d, d, n, G))
py <- rep(NA_real_, G)
mu <- matrix(NA_real_, nrow = G, ncol = d)
Sigma <- array(NA_real_, dim = c(d, d, G))
alpha <- rep(0.6, G)
eta <- rep(1.4, G)
log_dens <- matrix(NA_real_, nrow = n, ncol = G)
iter <- 0
loglik <- NULL
#--------------------------------#
# Parameter Initialization #
#--------------------------------#
init_method <- match.arg(init_method)
X_imp <- X
X_imp <- mean_impute(X)
if (G == 1) {
max_iter <- 1
pars <- cluster_pars(X = X_imp, clusters = rep(1, n))
py <- 1
mu <- pars$mu
Sigma <- pars$Sigma
} else {
init <- initialize_clusters(
X = X_imp,
G = G,
init_method = init_method,
clusters = clusters
)
py <- init$pi
mu <- init$mu
Sigma <- init$Sigma
}
#-------------------------#
# The ECM Algorithm #
#-------------------------#
while (iter < max_iter & getall(loglik) > epsilon) {
#++++ E-step ++++#
for (g in 1:G) {
for (j in 1:np) {
m <- M[j, ] # missing pattern j
o <- !m # observed pattern j
Xo_j <- X[Im[[j]], o, drop = FALSE] # observations with missing pattern j
mu_o <- mu[g, o]
Sigma_oo <- Sigma[o, o, g]
z[Im[[j]], g] <- dCN(Xo_j, mu = mu_o, Sigma = Sigma_oo, alpha = alpha[g], eta = eta[g])
v_tilde[Im[[j]], g] <- alpha[g] * mvtnorm::dmvnorm(Xo_j, mean = mu_o, sigma = as.matrix(Sigma_oo)) / z[Im[[j]], g]
}
}
v_tilde[is.nan(v_tilde)] <- 0
z_tilde <- sweep(z, 2, py, '*')
z_tilde <- z_tilde / rowSums(z_tilde)
z_tilde[is.infinite(z_tilde) | is.nan(z_tilde)] <- 1/G
for (g in 1:G) {
w_tilde[, g] <- v_tilde[, g] + (1 - v_tilde[, g]) / eta[g]
zw_tilde[, g] <- z_tilde[, g] * w_tilde[, g]
for (j in 1:np) {
m <- M[j, ] # missing pattern j
if (any(m)) {
o <- !m # observed pattern j
mu_m <- mu[g, m]
mu_o <- mu[g, o]
Sigma_oo <- Sigma[o, o, g]
Sigma_mo <- Sigma[m, o, g]
Sigma_oo_inv <- mnormt::pd.solve(Sigma_oo)
for (i in Im[[j]]) {
xi <- X[i, ]
x_ig_tilde <- mu_m + Sigma_mo %*% Sigma_oo_inv %*% (xi[o] - mu_o)
X_tilde[i, m, g] <- x_ig_tilde
}
}
}
}
#++++ CM-Step 1: pi and alpha ++++#
N <- colSums(z_tilde)
py <- N / n
alpha <- colSums(z_tilde * v_tilde) / N
alpha[alpha < 0.5] <- 0.5
alpha[alpha > 1] <- 1
#++++ CM-Step 1: mu ++++#
for (g in 1:G) {
mu_num <- colSums(z_tilde[, g] * w_tilde[, g] * X_tilde[, , g])
mu_den <- sum(z_tilde[, g] * w_tilde[, g])
mu[g, ] <- mu_num / mu_den
}
#++++ CM-Step 1: Prepare Sigma tilde ++++#
for (g in 1:G) {
for (j in 1:np) {
m <- M[j, ] # missing pattern j
if (any(m)) {
o <- !m # observed pattern j
mu_m <- mu[g, m]
mu_o <- mu[g, o]
Sigma_oo <- Sigma[o, o, g]
Sigma_om <- Sigma[o, m, g]
Sigma_mo <- Sigma[m, o, g]
Sigma_mm <- Sigma[m, m, g]
Sigma_oo_inv <- mnormt::pd.solve(Sigma_oo)
S_mm <- Sigma_mm - Sigma_mo %*% Sigma_oo_inv %*% Sigma_om
for (i in Im[[j]]) {
xi <- X[i, ]
Sigma_tilde[o, o, i, g] <- tcrossprod(xi[o] - mu_o)
Sigma_tilde[o, m, i, g] <- tcrossprod(xi[o] - mu_o, X_tilde[i, m, g] - mu_m)
Sigma_tilde[m, o, i, g] <- t(Sigma_tilde[o, m, i, g])
Sigma_tilde[m, m, i, g] <- tcrossprod(X_tilde[i, m, g] - mu_m) + S_mm / w_tilde[i, g]
}
} else {
X_centrd <- sweep(X[Im[[j]], ], 2, mu[g, ], '-')
cr_prods <- apply(X_centrd, 1, tcrossprod)
Sigma_tilde[, , Im[[j]], g] <- array(
data = unlist(cr_prods),
dim = c(d, d, length(Im[[j]]))
)
}
}
}
for (g in 1:G) {
#++++ CM-Step 1: Sigma ++++#
slc_ind <- slice.index(Sigma_tilde[, , , g, drop = FALSE], 3)
Sigma_num <- rowSums(zw_tilde[slc_ind, g] * Sigma_tilde[, , ,g, drop = FALSE], dims = 2)
Sigma[, , g] <- Sigma_num / N[g]
if (max(abs(Sigma[, , g] - t(Sigma[, , g]))) > .Machine$double.eps) {
matr <- Sigma[, , g]
matr[lower.tri(matr)] <- t(matr)[lower.tri(t(matr))]
Sigma[, , g] <- matr
}
#++++ CM-Step 2: eta ++++#
delta_o <- rep(NA_real_, n)
for (j in 1:np) {
m <- M[j, ] # missing pattern j
o <- !m # observed pattern j
delta_o[Im[[j]]] <- mahalanobis(X[Im[[j]], o, drop = FALSE], mu[g, o], Sigma[o, o, g], tol = 1e-20)
}
eta_num <- sum(z_tilde[, g] * (1 - v_tilde[, g]) * delta_o)
eta_den <- sum(do * z_tilde[, g] * (1 - v_tilde[, g]))
eta[g] <- eta_num / eta_den
eta[g] <- max(eta[g], eta_min)
if (eta[g] == eta_min) {
alpha[g] <- 0.999
}
}
#++++ Observed Log-Likelihood ++++#
for (g in 1:G) {
for (j in 1:np) {
m <- M[j, ] # missing pattern j
o <- !m # observed pattern j
Xo_j <- X[Im[[j]], o, drop = FALSE] # observations with missing pattern j
mu_o <- mu[g, o]
Sigma_oo <- Sigma[o, o, g]
log_dens[Im[[j]], g] <- log( dCN(Xo_j, mu = mu_o, Sigma = as.matrix(Sigma_oo), alpha = alpha[g], eta = eta[g]) )
}
}
log_py_dens <- sweep(log_dens, 2, log(py), FUN = '+')
final_loglik <- sum( apply(log_py_dens, 1, log_sum_exp) )
loglik <- c(loglik, final_loglik)
#++++ Update Progress ++++#
iter <- iter + 1
}
#---------------------------#
# Cluster Memberships #
#---------------------------#
clusters <- apply(z_tilde, 1, which.max)
#-------------------------#
# Outlier Detection #
#-------------------------#
cluster_matr <- clusters_to_matrix(clusters, G)
outliers <- rowSums(v_tilde * cluster_matr) < 0.5
#------------------#
# Imputation #
#------------------#
X_imputed <- X
complete <- complete.cases(X)
for (i in which(!complete)) {
X_imputed[i, ] <- X_tilde[i, , clusters[i]]
}
#----------------------------#
# Number of Parameters #
#----------------------------#
npar <- list(
pi = G - 1,
mu = G * d,
Sigma = G * d * (d + 1) / 2,
alpha = G,
eta = G
)
npar$total <- Reduce('+', npar)
#----------------------------#
# Information Criteria #
#----------------------------#
AIC <- -2 * final_loglik + 2 * npar$total
BIC <- -2 * final_loglik + npar$total * log(n)
KIC <- -2 * final_loglik + 3 * (npar$total + 1)
KICc <- -2 * final_loglik + 2 * (npar$total + 1) * n/(n-npar$total -2) - n * digamma((n-npar$total)/2) + n * log(n/2)
AIC3 <- -2 * final_loglik + 3 * npar$total
CAIC <- -2 * final_loglik + npar$total * (1 + log(n))
AICc <- -2 * final_loglik + 2 * npar$total * n/(n - npar$total - 1)
ent <- apply(z_tilde, 1, max)
ICL <- BIC - sum(ent * log(ent))
AWE <- -2 * (final_loglik + sum(ent * log(ent))) + 2 * npar$total * (3/2 + log(n))
CLC <- -2 * final_loglik + 2 * sum(ent * log(ent))
#----------------------#
# Prepare Output #
#----------------------#
c_names <- paste('comp', 1:G, sep = '')
v_names <- colnames(X)
if (is.null(v_names)) {
v_names <- 1:d
}
names(py) <- c_names
rownames(mu) <- c_names
colnames(mu) <- v_names
dimnames(Sigma) <- list(v_names, v_names, c_names)
names(alpha) <- c_names
names(eta) <- c_names
if (G == 1) {
mu <- mu[1, ]
Sigma <- Sigma[, , 1]
}
output <- list(
model = 'CN_incomplete_data',
pi = py,
mu = mu,
Sigma = Sigma,
alpha = alpha,
eta = eta,
z_tilde = z_tilde,
v_tilde = v_tilde,
clusters = clusters,
outliers = outliers,
data = X_imputed,
complete = !is.na(X),
npar = npar,
max_iter = max_iter,
iter_stop = iter,
final_loglik = final_loglik,
loglik = loglik,
AIC = AIC,
BIC = BIC,
KIC = KIC,
KICc = KICc,
AIC3 = AIC3,
CAIC = CAIC,
AICc = AICc,
ent = ent,
ICL = ICL,
AWE = AWE,
CLC = CLC,
init_method = init_method
)
class(output) <- 'MixtureMissing'
return(output)
}
######################################################################################
### ###
### Multivariate Contaminated Normal Mixture for Complete Data ###
### ###
######################################################################################
MCNM_complete_data <- function(
X,
G,
max_iter = 20,
epsilon = 0.01,
init_method = c("kmedoids", "kmeans", "hierarchical", "mclust", "manual"),
clusters = NULL,
eta_min = 1.001,
progress = TRUE
) {
#-------------------------------------#
# Objects for the ECM Algorithm #
#-------------------------------------#
n <- nrow(X)
d <- ncol(X)
z <- matrix(NA_real_, nrow = n, ncol = G)
z_tilde <- matrix(NA_real_, nrow = n, ncol = G)
v_tilde <- matrix(NA_real_, nrow = n, ncol = G)
w_tilde <- matrix(NA_real_, nrow = n, ncol = G)
zw_tilde <- matrix(NA_real_, nrow = n, ncol = G)
Sigma_tilde <- array(NA_real_, dim = c(d, d, n, G))
py <- rep(NA_real_, G)
mu <- matrix(NA_real_, nrow = G, ncol = d)
Sigma <- array(NA_real_, dim = c(d, d, G))
alpha <- rep(0.6, G)
eta <- rep(1.4, G)
log_dens <- matrix(NA_real_, nrow = n, ncol = G)
iter <- 0
loglik <- NULL
#--------------------------------#
# Parameter Initialization #
#--------------------------------#
init_method <- match.arg(init_method)
if (G == 1) {
max_iter <- 1
pars <- cluster_pars(X = X, clusters = rep(1, n))
py <- 1
mu <- pars$mu
Sigma <- pars$Sigma
} else {
init <- initialize_clusters(
X = X,
G = G,
init_method = init_method,
clusters = clusters
)
py <- init$pi
mu <- init$mu
Sigma <- init$Sigma
}
#-------------------------#
# The ECM Algorithm #
#-------------------------#
while (iter < max_iter & getall(loglik) > epsilon) {
#++++ E-step ++++#
for (g in 1:G) {
z[, g] <- dCN(X, mu = mu[g, ], Sigma = Sigma[, , g], alpha = alpha[g], eta = eta[g])
v_tilde[, g] <- alpha[g] * mvtnorm::dmvnorm(X, mean = mu[g, ], sigma = as.matrix(Sigma[, , g])) / z[, g]
w_tilde[, g] <- v_tilde[, g] + (1 - v_tilde[, g]) / eta[g]
}
z_tilde <- sweep(z, 2, py, '*')
z_tilde <- z_tilde / rowSums(z_tilde)
z_tilde[is.infinite(z_tilde) | is.nan(z_tilde)] <- 1/G
for (g in 1:G) {
zw_tilde[, g] <- z_tilde[, g] * w_tilde[, g]
}
#++++ CM-step 1: pi and alpha ++++#
N <- colSums(z_tilde)
py <- N / n
alpha <- colSums(z_tilde * v_tilde) / N
alpha[alpha < 0.5] <- 0.5
alpha[alpha > 1] <- 1
#++++ CM-step 1: mu ++++#
for (g in 1:G) {
mu_num <- colSums(z_tilde[, g] * w_tilde[, g] * X)
mu_den <- sum(z_tilde[, g] * w_tilde[, g])
mu[g, ] <- mu_num / mu_den
}
#++++ CM-step 1: Prepare Sigma tilde ++++#
for (g in 1:G) {
X_centered <- sweep(X, 2, mu[g, ])
X_centered_crossprod <- apply(X_centered, 1, tcrossprod)
Sigma_tilde[, , , g] <- array(X_centered_crossprod, dim = c(d, d, n))
}
for (g in 1:G) {
#++++ CM-step 1: Sigma ++++#
slc_ind <- slice.index(Sigma_tilde[, , , g, drop = FALSE], 3)
Sigma_num <- rowSums(zw_tilde[slc_ind, g] * Sigma_tilde[, , , g, drop = FALSE], dims = 2)
Sigma[, , g] <- Sigma_num / N[g]
if (max(abs(Sigma[, , g] - t(Sigma[, , g]))) > .Machine$double.eps) {
matr <- Sigma[, , g]
matr[lower.tri(matr)] <- t(matr)[lower.tri(t(matr))]
Sigma[, , g] <- matr
}
#++++ CM-step 2: eta ++++#
delta <- mahalanobis(X, mu[g, ], Sigma[, , g], tol = 1e-20)
eta_num <- sum(z_tilde[, g] * (1 - v_tilde[, g]) * delta)
eta_den <- d * sum(z_tilde[, g] * (1 - v_tilde[, g]))
eta[g] <- eta_num / eta_den
eta[g] <- max(eta[g], eta_min)
if (eta[g] == eta_min) {
alpha[g] <- 0.999
}
}
#++++ Observed Log-Likelihood ++++#
for (g in 1:G) {
log_dens[, g] <- log( dCN(X, mu = mu[g, ], Sigma = Sigma[, , g], alpha = alpha[g], eta = eta[g]) )
}
log_py_dens <- sweep(log_dens, 2, log(py), FUN = '+')
final_loglik <- sum( apply(log_py_dens, 1, log_sum_exp) )
loglik <- c(loglik, final_loglik)
#++++ Update Progress ++++#
iter <- iter + 1
}
#---------------------------#
# Cluster Memberships #
#---------------------------#
clusters <- apply(z_tilde, 1, which.max)
#-------------------------#
# Outlier Detection #
#-------------------------#
cluster_matr <- clusters_to_matrix(clusters, G)
outliers <- rowSums(v_tilde * cluster_matr) < 0.5
#----------------------------#
# Number of Parameters #
#----------------------------#
npar <- list(
pi = G - 1,
mu = G * d,
Sigma = G * d * (d + 1) / 2,
alpha = G,
eta = G
)
npar$total <- Reduce('+', npar)
#----------------------------#
# Information Criteria #
#----------------------------#
AIC <- -2 * final_loglik + 2 * npar$total
BIC <- -2 * final_loglik + npar$total * log(n)
KIC <- -2 * final_loglik + 3 * (npar$total + 1)
KICc <- -2 * final_loglik + 2 * (npar$total + 1) * n/(n-npar$total -2) - n * digamma((n-npar$total)/2) + n * log(n/2)
AIC3 <- -2 * final_loglik + 3 * npar$total
CAIC <- -2 * final_loglik + npar$total * (1 + log(n))
AICc <- -2 * final_loglik + 2 * npar$total * n/(n - npar$total - 1)
ent <- apply(z_tilde, 1, max)
ICL <- BIC - sum(ent * log(ent))
AWE <- -2 * (final_loglik + sum(ent * log(ent))) + 2 * npar$total * (3/2 + log(n))
CLC <- -2 * final_loglik + 2 * sum(ent * log(ent))
#----------------------#
# Prepare Output #
#----------------------#
c_names <- paste('comp', 1:G, sep = '')
v_names <- colnames(X)
if (is.null(v_names)) {
v_names <- 1:d
}
names(py) <- c_names
rownames(mu) <- c_names
colnames(mu) <- v_names
dimnames(Sigma) <- list(v_names, v_names, c_names)
names(alpha) <- c_names
names(eta) <- c_names
if (G == 1) {
mu <- mu[1, ]
Sigma <- Sigma[, , 1]
}
output <- list(
model = 'CN_complete_data',
pi = py,
mu = mu,
Sigma = Sigma,
alpha = alpha,
eta = eta,
z_tilde = z_tilde,
v_tilde = v_tilde,
clusters = clusters,
outliers = outliers,
data = X,
complete = !is.na(X),
npar = npar,
max_iter = max_iter,
iter_stop = iter,
final_loglik = final_loglik,
loglik = loglik,
AIC = AIC,
BIC = BIC,
KIC = KIC,
KICc = KICc,
AIC3 = AIC3,
CAIC = CAIC,
AICc = AICc,
ent = ent,
ICL = ICL,
AWE = AWE,
CLC = CLC,
init_method = init_method
)
class(output) <- 'MixtureMissing'
return(output)
}
####################################################################
### ###
### Density Function for Contaminated Distribution ###
### ###
####################################################################
dCN <- function(
X,
mu = rep(0, d), # location
Sigma = diag(d), # dispersion
alpha = 0.99, # proportion of good observations
eta = 1.01, # degree of contamination
log = FALSE
) {
#----------------------#
# Input Checking #
#----------------------#
if (is.data.frame(X)) {
X <- as.matrix(X)
}
if (is.vector(X)) {
X <- matrix(X, nrow = 1, ncol = length(X))
}
if (!is.matrix(X)) {
stop('X must be a vector or matrix')
}
if (is.vector(Sigma)) {
if (length(Sigma) == 1) {
Sigma <- matrix(Sigma, nrow = 1, ncol = 1)
}
}
n <- nrow(X)
d <- ncol(X)
if (length(mu) != d) {
stop('mu must be a vector of length d')
}
if (nrow(Sigma) != d | ncol(Sigma) != d) {
stop('Sigma must be a d x d matrix')
}
if (alpha < 0 | alpha > 1) {
stop('alpha must be between 0 and 1')
}
if (eta <= 0) {
stop('eta must be greater than 0')
}
good_norm <- exp( mvtnorm::dmvnorm(X, mu, Sigma, log = TRUE) )
bad_norm <- exp( mvtnorm::dmvnorm(X, mu, eta * Sigma, log = TRUE) )
dens <- alpha * good_norm + (1 - alpha) * bad_norm
dens[dens <= 10^(-323)] <- 10^(-323)
return(dens)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.