Nothing
`formula.averaging` <-
function (x, ...) {
if (!is.null(x$formula)) {
x$formula
} else if (!is.null(modelList <- attr(x, "modelList"))) {
update(formula(modelList[[1L]]), reformulate(unique(unlist(lapply(modelList,
function(x) attr(terms(formula(x)), "term.labels"))))))
} else NULL
}
`coef.averaging` <-
function(object, full = FALSE, ...) {
full <- .checkFull(object, full)
object$coefficients[if(full) 1L else 2L, ]
}
`fitted.averaging` <-
function (object, ...) .NotYetImplemented()
# predict.averaging(object, backtransform = TRUE, type = "link")
model.frame.averaging <-
function (formula, ...) {
mergeMF(getModelList(formula))
}
model.matrix.averaging <-
function (object, ...) {
if(j <- match("x", names(object), nomatch = 0L)) return(object[[j]])
mf <- model.frame(object)
do.call("model.matrix", list(object = terms(mf), data = mf,
contrasts.arg = get.contrasts(object)))
}
`summary.averaging` <-
function (object, ...) {
.makecoefmat <-
function(cf) {
no.ase <- all(is.na(cf[, 3L]))
z <- abs(cf[, 1L] / cf[, if(no.ase) 2L else 3L])
pval <- 2 * pnorm(z, lower.tail = FALSE)
cbind(cf[, if(no.ase) 1L:2L else 1L:3L, drop = FALSE],
`z value` = z, `Pr(>|z|)` = zapsmall(pval))
}
is.arm <- ncol(object$msTable) == 6L && (colnames(object$msTable)[6L] == "ARM weight")
weight <- object$msTable[, if(is.arm) 6L else 5L]
object$coefmat.full <- .makecoefmat(.coefarr.avg(object$coefArray, weight,
attr(object, "revised.var"), TRUE, 0.05))
if(!is.arm) object$coefmat.subset <-
.makecoefmat(.coefarr.avg(object$coefArray, weight,
attr(object, "revised.var"), FALSE, 0.05))
object$coef.nmod <- colSums(!is.na(object$coefArray[, 1L, , drop = FALSE]))
structure(object, ARM = is.arm, class = c("summary.averaging", "averaging"))
}
`confint.averaging` <-
function (object, parm, level = 0.95, full = FALSE, ...) {
full <- .checkFull(object, full)
a2 <- 1 - level
a <- a2 / 2
cf <- object$coefArray[, 1L, ]
pnames <- colnames(cf)
if (missing(parm)) parm <- pnames
else if (is.numeric(parm)) parm <- pnames[parm]
missing.par <- is.na(cf)
se <- object$coefArray[, 2L, ]
dfs <- object$coefArray[, 3L, ]
if(full) {
se[missing.par] <- cf[missing.par] <- 0
if(!all(is.na(dfs))) dfs[missing.par] <- Inf
}
wts <- Weights(object) ## XXX: !
ci <- t(sapply(parm, function(i)
par.avg(cf[,i], se[,i], wts, dfs[, i], alpha = a2)))[, 4L:5L, drop = FALSE]
ci[is.na(object$coefficients[1L, parm]), ] <- NA_real_
colnames(ci) <- format_perc(c(a, 1L - a), 3L)
return(ci)
}
`print.summary.averaging` <-
function (x, digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"), ...) {
cat("\nCall:\n", paste(asChar(x$call, nlines = -1L), sep = "\n", collapse = "\n"),
"\n\n", sep = "")
comcallstr <-
if(!is.null(attr(x, "model.calls"))) {
commonCallStr(calls = attr(x, "model.calls"))
} else if(!is.null(attr(x, "modelList"))) {
commonCallStr(attr(x, "modelList"))
} else NA
if(!is.na(comcallstr)) {
cat("Component model call: \n")
cat(strwrap(comcallstr), sep = " \n ")
}
cat("\nComponent models: \n")
msTable <- x$msTable
wi <- ncol(msTable)
if(!isTRUE(attr(x, "ARM")) && names(msTable)[wi] != "weight")
msTable <- msTable[, c(1L, wi), drop = FALSE]
print(round(as.matrix(msTable), 2L), na.print = "")
if(!is.null(attr(x$msTable, "term.codes"))) {
cat("\nTerm codes: \n")
print.default(attr(x$msTable, "term.codes"), quote = FALSE)
}
cat("\nModel-averaged coefficients: ")
if (nnotdef <- sum(is.na(x$coefmat.full[, 1L]))) {
msg <- paste0("\n(", nnotdef, " not defined because of singularities in all ",
"component models)", collapse = "")
cat(strwrap(msg, exdent = 4L), sep = "\n")
}
hasPval <- TRUE
coefTitles <- if(isTRUE(attr(x, "ARM")))
c(coefmat.full = "(ARM average)") else
c(coefmat.full = "(full average)",
coefmat.subset = "(conditional average)")
n <- length(coefTitles)
for (i in seq.int(n)) {
iname <- names(coefTitles[i])
if (is.null(x[[i]])) next
cat(" \n", coefTitles[i], " \n", sep = "")
printCoefmat(x[[iname]],
P.values = hasPval, has.Pvalue = hasPval,
digits = digits, signif.stars = signif.stars,
signif.legend = i == n
)
}
nose <- apply(x$coefArray[, 2L, ], 1L, function(x) all(is.na(x)))
msg <- if(all(nose)) "Standard errors cannot be calculated because no component models provide them \n" else
if(any(nose)) "Standard errors cannot be calculated because some component models do not provide them \n"
cat(strwrap(msg, exdent = 4L), sep = "\n")
#if (no.ase) cat("Confidence intervals are unadjusted \n")
#printCoefmat(matrix(x$coef .shrinkage, nrow = 1L,
#dimnames = list("", x$term.names)), P.values = FALSE,
#has.Pvalue = FALSE, cs.ind = seq_along(x$term.names), tst.ind = NULL)
# cat("\nSum of weights: \n")
# print(round(x$sw, 2L))
}
`print.averaging` <-
function(x, ...) {
cat("\nCall:\n", paste(asChar(x$call, nlines = -1L), sep = "\n", collapse = "\n"),
"\n\n", sep = "")
cat("Component models:", "\n")
comp.names <- rownames(x$msTable)
comp.names[comp.names == ""] <- "null"
cat(format(sQuote(comp.names), justify = "l"), fill = TRUE)
cat("\nCoefficients:", "\n")
print(x$coefficients[!is.na(x$coefficients[,1L]), , drop = FALSE])
x
}
`vcov.averaging` <-
function (object, full = FALSE, ...) {
full <- .checkFull(object, full)
full <- as.logical(full)[1L]
models <- attr(object, "modelList")
if(is.null(models)) stop("cannot calculate covariance matrix from ",
"'averaging' object without component models")
vcovs <- lapply(models, .vcov)
names.all <- dimnames(object$coefArray)[[3L]]
nvars <- length(names.all)
nvarseq <- seq(nvars)
wts <- Weights(object)
wts <- wts / sum(wts) # normalize just in case
vcov0 <- matrix(if(full) 0 else NA_real_, nrow = nvars,
ncol = nvars, dimnames = list(names.all, names.all))
vcovs2 <- lapply(vcovs, function(v) {
i <- match(fixCoefNames(dimnames(v)[[1L]]), names.all)
vcov0[i, i] <- v
return(vcov0)
})
b1 <- object$coefArray[, 1L, ]
if(full) b1[is.na(b1)] <- 0
avgb <- object$coefficients[2L - full, ]
res <- sapply(nvarseq, function(c1) sapply(nvarseq, function(c2) {
weighted.mean(sapply(vcovs2, "[", c1, c2) + (b1[, c1] - avgb[c1]) *
(b1[, c2] - avgb[c2]), wts, na.rm = TRUE)
}))
dimnames(res) <- list(names.all, names.all)
return(res)
}
`logLik.averaging` <- function (object, ...) {
models <- attr(object, "modelList")
if(is.null(models)) {
nobs <- attr(object, "nobs")
apply(object$msTable, 1L, function(x) structure(list(x[2L]),
df = x[1L], nobs = nobs, class = "logLik"))
} else {
structure(lapply(attr(object, "modelList"), logLik),
names = rownames(object$msTable))
}
}
`coefTable.averaging` <-
function (model, full = FALSE, adjust.se = TRUE, ...) {
full <- .checkFull(model, full)
no.ase <- any(is.na(model$coefArray[,3L,]) & !is.na(model$coefArray[,1L,]))
if(!missing(adjust.se) && adjust.se && no.ase)
warning("adjusted std. error not available for this type of model")
weight <- model$msTable[, ncol(model$msTable)]
cols <- c(1L, if(!adjust.se || no.ase) 2L else 3L)
ct <- .coefarr.avg(model$coefArray, weight, TRUE, full, .05)[, cols, drop = FALSE]
.makeCoefTable(ct[,1L], ct[,2L], NA, rownames(ct))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.