Nothing
`coefTable` <-
function (model, ...) UseMethod("coefTable")
.makeCoefTable <-
function(x, se, df = NA_real_, coefNames = names(x)) {
if(n <- length(x)) {
xdefined <- !is.na(x)
ndef <- sum(xdefined)
if(ndef < n) {
if(length(se) == ndef) {
y <- rep(NA_real_, n); y[xdefined] <- se; se <- y
}
if(length(df) == ndef) {
y <- rep(NA_real_, n); y[xdefined] <- df; df <- y
}
}
}
if(n && n != length(se)) stop("length(x) is not equal to length(se)")
ret <- matrix(NA_real_, ncol = 3L, nrow = length(x),
dimnames = list(coefNames, c("Estimate", "Std. Error", "df")))
if(n) ret[, ] <- cbind(x, se, rep(if(is.null(df)) NA_real_ else df,
length.out = n), deparse.level = 0L)
class(ret) <- c("coefTable", "matrix")
ret
}
`coefTable.default` <-
function(model, ...) {
dfs <- tryCatch(df.residual(model), error = function(e) NA_real_)
cf <- summary(model, ...)$coefficients
.makeCoefTable(cf[, 1L], cf[, 2L], dfs, coefNames = rownames(cf))
}
`coefTable.lm` <-
`coefTable.betareg` <-
function(model, ...)
.makeCoefTable(coef(model), sqrt(diag(vcov(model, ...))), df.residual(model))
`coefTable.survreg` <-
function(model, ...) {
.makeCoefTable(
coeffs(model),
sqrt(diag(vcov(model, ...))),
NA,
)
}
`coefTable.coxph` <-
function(model, ...) {
.makeCoefTable(coef(model), if(all(is.na(model$var)))
rep(NA_real_, length(coef(model))) else sqrt(diag(model$var)),
model$df.residual)
}
`coefTable.glmmML` <- function(model, ...)
.makeCoefTable(model$coefficients, model$coef.sd)
`coefTable.gls` <-
function (model, ...)
.makeCoefTable(coef(model), sqrt(diag(as.matrix(model$varBeta))),
model$dims$N - model$dims$p)
`coefTable.lme` <-
function(model, adjustSigma = TRUE, ...) {
se <- sqrt(diag(as.matrix(model$varFix)))
if (adjustSigma && model$method == "ML")
se <- se * sqrt(model$dims$N / (model$dims$N - length(se)))
.makeCoefTable(nlme::fixef(model), se, model$fixDF[["X"]])
}
`coefTable.multinom` <-
function (model, ...) {
.makeCoefTable(coeffs(model), sqrt(diag(vcov(model, ...))))
}
`coefTable.coxme` <-
`coefTable.lmekin` <-
function(model, ...) {
# code from coxme:::print.coxme
beta <- model$coefficients # for class coxme:
if(is.list(beta) && !is.null(beta$fixed))
beta <- beta$fixed # for class lmekin and older coxme
nvar <- length(beta)
if(nvar) {
nfrail <- nrow(model$var) - nvar
se <- sqrt(get("diag", getNamespace("Matrix"))(model$var)[nfrail + 1L:nvar])
} else se <- NULL
.makeCoefTable(beta, se)
}
`coefTable.rq` <-
function(model, ...)
.makeCoefTable(model$coefficients, rep(NA_real_, length(model$coefficients)))
`coefTable.zeroinfl` <-
function(model, ...)
.makeCoefTable(coef(model), sqrt(diag(vcov(model, ...))))
`coefTable.hurdle` <-
function(model, ...) {
cts <- summary(model)$coefficients
ct <- do.call("rbind", unname(cts))
cfnames <- paste0(rep(names(cts), vapply(cts, nrow, 1L)), "_", rownames(ct))
.makeCoefTable(ct[, 1L], ct[, 2L], coefNames = cfnames)
#.makeCoefTable(coef(model), sqrt(diag(vcov(model, ...))))
}
`coefTable.aodql` <-
`coefTable.glimML` <-
`coefTable.unmarkedFit` <-
function(model, ...)
.makeCoefTable(coef(model), sqrt(diag(vcov(model, ...))))
`coefTable.gee` <-
`coefTable.geeglm` <-
function(model, ..., type = c("naive", "robust")) {
cf <- summary(model, ...)$coefficients
j <- if(match.arg(type) == "naive") 2L else 4L
.makeCoefTable(cf[, 1L], cf[, j], coefNames = rownames(cf))
}
`coefTable.geem` <-
function(model, ..., type = c("naive", "robust")) {
smr <- summary(model)
.makeCoefTable(smr$beta, smr[[if(match.arg(type) == "naive")
"se.model" else "se.robust"]],
coefNames = smr$coefnames)
}
`coefTable.geese` <-
function(model, ..., type = c("naive", "robust")) {
cf <- summary(model, ...)$mean
type <- match.arg(type)
j <- if(type == "naive") 2L else 4L
.makeCoefTable(cf[, 1L], cf[, j], coefNames = rownames(cf))
}
`coefTable.yagsResult` <-
function(model, ..., type = c("naive", "robust")) {
type <- match.arg(type)
vcv <- slot(model, if(type == "naive") "naive.parmvar" else "robust.parmvar")
.makeCoefTable(model@coefficients, sqrt(diag(vcv)), coefNames = model@varnames)
}
`coefTable.splm` <-
function (model, ...) {
cf <- sapply(c("coefficients", "arcoef", "errcomp"), function(i)
if(is.matrix(model[[i]])) model[[i]][, 1L] else model[[i]],
simplify = FALSE)
ncf <- sapply(cf, length)
vcovlab <- c(coefficients = "vcov", arcoef = "vcov.arcoef", errcomp = "vcov.errcomp")
se <- sqrt(unlist(lapply(names(vcovlab), function(i) {
vcv2 <- diag(model[[vcovlab[i]]])
c(vcv2, rep(NA_real_, ncf[[i]] - length(vcv2)))
})))
.makeCoefTable(unlist(cf, use.names = FALSE), se,
coefNames = unlist(lapply(cf, names), use.names = FALSE))
}
`coefTable.MCMCglmm` <-
function (model, ...) {
cf <- coeffs(model)
.makeCoefTable(cf, se = rep(NA_real_, length.out = length(cf)))
}
`coefTable.gamm` <-
function (model, ...) coefTable.lm(model$gam, ...)
`coefTable.mark` <-
function (model, orig.names = FALSE, ...) {
dfs <- model$results[['n']] - model$results[['npar']]
beta <- model$results[['beta']]
.makeCoefTable(beta[, 1L], beta[, 2L], dfs,
coefNames = if(orig.names) rownames(beta) else
gsub("^([a-zA-Z]+):(.*)$", "\\1(\\2)", rownames(beta), perl = TRUE))
}
`coefTable.logistf` <-
function (model, ...)
.makeCoefTable(model$coefficients, sqrt(diag(model$var)))
`coefTable.aodml` <-
function (model, ...) {
.makeCoefTable(coeffs(model), sqrt(diag(vcov(model))))
#.makeCoefTable(coeffs(model), sqrt(diag(model$varparam)))
}
## XXX: fixed effects coefficients only
`coefTable.asreml` <-
function (model, ...) {
.makeCoefTable(
x = model$coefficients$fixed,
se = sqrt(model$vcoeff$fixed * model$sigma2) ## ?
)
}
`coefTable.cplm` <-
function (model, ...)
.makeCoefTable(coef(model), sqrt(diag(vcov(model))),
model@df.residual)
`coefTable.cpglmm` <-
function (model, ...)
.makeCoefTable(coeffs(model), sqrt(diag(vcov(model))))
`coefTable.maxlikeFit` <-
function (model, ...)
.makeCoefTable(model$Est[, 1L], model$Est[, 2L])
coefTable.bic.glm <-
function (model, ...) {
.makeCoefTable(model$condpostmean, model$condpostsd, NA_integer_,
dimnames(model$mle)[[2L]])
}
# coefTable methods:
`print.coefTable` <-
function (x, ...)
stats::printCoefmat(x[, if(all(is.na(x[, 3L]))) -3L else TRUE, drop = FALSE],
has.Pvalue = FALSE)
summary.coefTable <-
function (object, ...) {
tvalue <- object[, 1L] / object[, 2L]
if (all(is.na(object[, 3L]))) {
pvalue <- 2 * pnorm(-abs(tvalue))
rval <- cbind(object, tvalue, pvalue)
cn <- c("z value", "Pr(>|z|)")
} else if (any(is.finite(tvalue))) {
pvalue <- 2 * pt(-abs(tvalue), object[, 3L])
cn <- c("t value", "Pr(>|t|)")
} else {
pvalue <- tvalue <- NaN
cn <- c("t value", "Pr(>|t|)")
}
rval <- cbind(object, tvalue, pvalue)
colnames(rval)[4L:5L] <- cn
class(rval) <- c("summary.coefTable", class(object))
rval
}
`print.summary.coefTable` <-
function (x, signif.stars = getOption("show.signif.stars"), ...) {
j <- if(all(is.na(x[, 3L]))) -3L else TRUE
stats::printCoefmat(x[, j],
has.Pvalue = any(is.finite(x[, 5L])),
signif.stars = signif.stars,
...)
}
plot.mcoefTable <-
function (x, y, labAsExpr = FALSE, n = 101, w = 5, ...) {
lab_as_expr <- function(x) {
x <- gsub(":", "%*%", x, perl = TRUE)
x <- gsub("\\B_?(\\d+)(?![\\w\\._])", "[\\1]", x, perl = TRUE)
parse(text = x)
}
xd <- function(z, n, w, x = NULL) {
rval <- matrix(NA_real_, ncol = 3L, nrow = n)
rval[, 1L] <- if(is.null(x)) seq(z[1L] - (w * z[2L]), z[1L] + (w * z[2L]),
length.out = n) else x
if(!is.na(z[3L]))
rval[, 2L] <- dt((rval[, 1L] - z[1L]) / z[2L], z[3L]) / z[2L]
rval[, 3L] <- dnorm(rval[, 1L], z[1L], z[2L])
rval
}
m <- nrow(x)
lab <- if(labAsExpr) lab_as_expr(rownames(x)) else rownames(x)
nmodels <- dim(x)[3L]
col <- 1L:nmodels
par(mfrow = n2mfrow(m), ...)
for(i in 1L:m) {
#cat("--", dimnames(x)[[1]][i], "--\n")
mat <- matrix(0, n, 2L * nmodels + 1L)
for(k in 1L:nmodels) {
j <- seq.int(length.out = 2 + (k == 1), from = 1 + (k - 1)* 2 + (k != 1))
xlim <- c(min(x[i, 1L, ]) - w * min(x[i, 2L, ]), max(x[i, 1L,]) + w * max(x[i,2L,]))
vx <- seq(xlim[1L], xlim[2L], length.out = n)
v <- xd(x[i, , k], n = n, w = w, x = vx)
mat[, j] <- v[, (2 - (k == 1)):3]
}
plot.new()
plot.window(xlim = range(mat[, 1L]), ylim = range(mat[,-1L], na.rm = TRUE))
j <- seq.int(2, length.out = nmodels, by = 2)
if(any(!is.na(mat[, j])))
matplot(mat[, 1], mat[, j], type = "l", lty = 2, add = TRUE, col = col)
matplot(mat[, 1L], mat[, j + 1L], type = "l", lty = 1, add = TRUE, col = col)
abline(v = x[i, 1L, ], lty = 1L, col = col)
abline(v = 0, lty =3L, col = 8)
axis(1L)
axis(2L)
box()
title(lab[[i]])
}
invisible()
}
plot.coefTable <-
function (x, y, labAsExpr = FALSE, n = 101, w = 5,
include.zero = TRUE,
col = 2, lwd = par("lwd"), lty = 1, lend = par("lend"),
...) {
xd <- function(z, n, w) {
#rval <- matrix(NA_real_, ncol = 3L, nrow = n)
rval <- matrix(NA_real_, ncol = 2L, nrow = n)
x0 <- z[1L] - w * z[2L]
x1 <- z[1L] + w * z[2L]
if(include.zero) {
x0 <- min(0, x0)
x1 <- max(0, x1)
}
rval[, 1L] <- seq(x0, x1, length.out = n)
rval[, 2L] <- if(!anyNA(z[3L])) {
dt((rval[, 1L] - z[1L]) / z[2L], z[3L]) / z[2L]
} else
dnorm(rval[, 1L], z[1L], z[2L])
rval
}
m <- nrow(x)
lab <- if(labAsExpr) .lab2expr(rownames(x)) else rownames(x)
par(mfrow = n2mfrow(m))
for(i in 1L:m) {
v <- xd(x[i, ], n = n, w = w)
plot.new()
plot.window(xlim = range(v[, 1L]),
ylim = range(v[,-1L], na.rm = TRUE))
#lines(v[, 1L], v[, 2L])
lines(v[, 1L], v[, 2L], col = col, lwd = lwd, lty = lty, lend = lend)
abline(v = c(x[i, 1L], 0), lty = c(1L, 3L))
axis(1L)
axis(2L)
box()
title(substitute(A == B %+-% C, list(A = lab[[i]],
B = round(x[i, 1L], 1L), C = round(x[i, 2L], 2L))))
}
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.