View source: R/olink_normalization_product.R
olink_normalization_bridgeable | R Documentation |
The function uses a dataset from Olink Explore 3072 and a dataset from Olink Explore HT, and examines if the matched assays between the two products can be normalized to each other. The input datasets should be exported from Olink software and should not be altered prior to importing them to this function.
olink_normalization_bridgeable(lst_df, ref_cols, not_ref_cols, seed = 1)
lst_df |
A named list of the 2 input datasets. First element should be the reference dataset from Olink Explore HT and the second element should originate from Olink Explore 3072. |
ref_cols |
A named list with the column names to use. Exported from olink_norm_input_check. |
not_ref_cols |
A named list with the column names from the non-reference dataset. Exported from olink_norm_input_check. |
seed |
Integer random seed (Default: seek = 1). |
All processes below assume that the first element from lst_df is the
reference dataset (e.g. Olink Explore HT), and the other element of the list
is the non-reference dataset (e.g. Olink Explore 3072). The input datasets
have to be pre-processed by olink_norm_input_check
which will take care of mapping of assay identifiers and various checks.
Also, the input datasets should exclusively contain datapoints from bridge
samples. When this function is called from the function
olink_normalization
, then the list is created seamlessly in the
background, and the datasets have been already processed by
olink_norm_input_check
.
The input ref_cols is a named list masking column names of the
reference dataset. This list is generated automatically from
olink_norm_input_check
when it is called from
olink_normalization
. In addition,
olink_normalization
has also utilized
norm_internal_rename_cols
to rename the columns of the
non-reference dataset according to the ones of the reference dataset, hence
all column names should match.
A "tibble" in long format with the following columns:
OlinkID: Underscore-separated Olink identifiers of matching assays between Olink Explore HT and Olink Explore 3072.
BridgingRecommendation: A character vector indicating whether the matching assays are considered as bridgeable or not, and the recommended type of normalization to perform.
Amrita Kar Marianne Sandin Danai G. Topouza Klev Diamanti
# check input datasets
data_explore_check <- OlinkAnalyze:::olink_norm_input_check(
df1 = OlinkAnalyze:::data_3k_small,
df2 = OlinkAnalyze:::data_ht_small,
overlapping_samples_df1 = intersect(
x = unique(OlinkAnalyze:::data_3k_small$SampleID),
y = unique(OlinkAnalyze:::data_ht_small$SampleID)
) |>
(\(x) x[!grepl("CONTROL", x)])() |>
head(20L),
overlapping_samples_df2 = NULL,
df1_project_nr = "P1",
df2_project_nr = "P2",
reference_project = "P2",
reference_medians = NULL
)
# create lst_df
lst_df <- list(
data_explore_check$ref_df,
data_explore_check$not_ref_df
)
names(lst_df) <- c(data_explore_check$ref_name,
data_explore_check$not_ref_name)
# create ref_cols
ref_cols <- data_explore_check$ref_cols
not_ref_cols <- data_explore_check$not_ref_cols
# run olink_normalization_bridgeable
is_bridgeable_result <- OlinkAnalyze:::olink_normalization_bridgeable(
lst_df = lst_df,
ref_cols = ref_cols,
not_ref_cols = not_ref_cols,
seed = 1
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.