Nothing
#' @title Simulate a Trial Using Bayesian Response-Adaptive Randomization with a Control Group for Continuous Endpoint with Known Variances
#' @description \code{sim_brar_known_var} simulate a trial with two to five arms using Bayesian Response-Adaptive
#' Randomization with a control group for continuous outcomes with known variances. The conjugate prior distributions follow
#' Normal (\eqn{N(mean,sd)}) distributions and can be specified individually for each arm.
#' @details This function generates a designed trial using Bayesian response-adaptive randomization with
#' a control group under no delay and delayed scenarios for continuous outcomes with known variances. The function can handle trials with up to
#' 5 arms. This function uses the formula
#' \eqn{\frac{Pr(\mu_k={\sf max}\{\mu_1,...,\mu_K\})^{tp}} {\sum_{k=1}^{K}{Pr(\mu_k={\sf max}\{\mu_1,...,\mu_K\})^{tp}}}} with \code{side} equals to 'upper',
#' and \eqn{\frac{Pr(\mu_k={\sf min}\{\mu_1,...,\mu_K\})^{tp}} {\sum_{k=1}^{K}{Pr(\mu_k={\sf min}\{\mu_1,...,\mu_K\}){tp}}}}
#' with \code{side} equals to 'lower', utilizing available data at each step.
#' Considering the delay mechanism, \code{Pats} (the number of patients accrued within a certain time frame),
#' \code{nMax} (the assumed maximum accrued number of patients with the disease in the population) and
#' \code{TimeToOutcome} (the distribution of delayed response times or a fixed delay time for responses)
#' are parameters in the functions adapted from \url{https://github.com/kwathen/IntroBayesianSimulation}.
#' Refer to the website for more details.
#' @aliases sim_brar_known_var
#' @export sim_brar_known_var
#' @param Pats the number of patients accrued within a certain time frame indicates the
#' count of individuals who have been affected by the disease during that specific period,
#' for example, a month or a day. If this number is 10, it represents that
#' 10 people have got the disease within the specified time frame.
#' @param nMax the assumed maximum accrued number of patients with the disease in the population, this number
#' should be chosen carefully to ensure a sufficient number of patients are simulated,
#' especially when considering the delay mechanism.
#' @param TimeToOutcome the distribution of delayed response times or a fixed delay time for responses.
#' The delayed time could be a month, a week or any other time frame. When the unit changes,
#' the number of TimeToOutcome should also change. It can be in the format
#' of expression(rnorm( length( vStartTime ),30, 3)), representing delayed responses
#' with a normal distribution, where the mean is 30 days and the standard deviation is 3 days.
#' @param enrollrate probability that patients in the population can enroll in the trial.
#' This parameter is related to the number of people who have been affected by the disease in the population,
#' following an exponential distribution.
#' @param N1 number of participants with equal randomization in the 'initialization' period.
#' Recommend using 10 percent of the total sample size.
#' @param armn number of total arms in the trial.
#' @param au a vector of cut-off values in the final selection at the end of the trial,
#' with a length equal to the number of arms minus 1.
#' @param N2 maximal sample size for the trial.
#' @param tp tuning parameter. Some commonly used numbers are 0.5, 1 and n/2N.
#' @param armlabel a vector of treatment labels with an example of c(1, 2), where 1 and 2 describe
#' how each arm is labeled in a two-armed trial.
#' @param blocksize size of block used for equal randomization regarding participants in the 'initialization' period.
#' Recommend to be an even multiple of the number of total arms.
#' @param mean a vector of means in hypotheses, for example, as c(10,10) where 10 stands for the mean
#' in both groups. Another example is c(10,12) where 10 and 12 stand for the mean
#' for the control and the treatment group, respectively.
#' @param sd a vector of standard deviations in hypotheses, for example, as c(2,2) where 2 stands for the standard deviation
#' in both groups. Another example is c(1,2) where 1 and 2 stand for the standard deviation
#' for the control and the treatment group, respectively.
#' @param minstart a specified number of participants when one starts to check decision rules.
#' @param deltaa a vector of minimal effect expected to be observed for early futility stopping in
#' each arm is approximately \eqn{1\%}. The length of this parameter is \code{armn}-1.
#' @param tpp indicator of \code{tp} equals to n/2N. When \code{tp} is n/2N, \code{tpp} should be assigned 1. Default value is set to 0.
#' @param deltaa1 a vector of pre-specified minimal effect size expected to be observed at the final stage
#' for each arm. The length of this parameter is \code{armn}-1.
#' @param mean10,sd10 prior mean and sd in \eqn{N(mean,sd)} of arm 1 in the trial, which stands for the control. Default value is set to 1.
#' @param mean20,sd20 prior mean and sd in \eqn{N(mean,sd)} of arm 2 in the trial. Default value is set to \code{mean10} and \code{sd10}.
#' @param mean30,sd30 prior mean and sd in \eqn{N(mean,sd)} of arm 3 in the trial. Default value is set to \code{mean10} and \code{sd10}.
#' @param mean40,sd40 prior mean and sd in \eqn{N(mean,sd)} of arm 4 in the trial. Default value is set to \code{mean10} and \code{sd10}.
#' @param mean50,sd50 prior mean and sd in \eqn{N(mean,sd)} of arm 5 in the trial. Default value is set to \code{mean10} and \code{sd10}.
#' @param n10 explicit prior n of arm 1 in the trial, which stands for the control. Default value is set to 1.
#' @param n20 explicit prior n of arm 2 in the trial. Default value is set to \code{n10}.
#' @param n30 explicit prior n of arm 3 in the trial. Default value is set to \code{n10}.
#' @param n40 explicit prior n of arm 4 in the trial. Default value is set to \code{n10}.
#' @param n50 explicit prior n of arm 5 in the trial. Default value is set to \code{n10}.
#' @param side direction of a one-sided test, with values 'upper' or 'lower'.
#' @param ... additional arguments to be passed to \code{\link[stats]{integrate}} (such as rel.tol) from this function.
#' @return \code{sim_brar_known_var} returns an object of class "brar". An object of class "brar" is a list containing
#' final decision, test statistics, the simulated data set and participants accrued for each arm
#' at the time of termination of that group in one trial.
#' The simulated data set includes 5 columns: participant ID number, enrollment time, observed time of results,
#' allocated arm, and participants' results. In the final decision, 'Superiorityfinal' refers to the selected arm,
#' while 'Not Selected' indicates the arm stopped due to futility, and 'Control Selected' denotes the control arm chosen
#' because other arms did not meet futility criteria before the final stage or were not deemed effective at the final stage.
#' Note that before final stage of the trial, test statistics is calculated from \code{deltaa}, and test statistics is
#' calculated from \code{deltaa1} at the final stage.
#' @importFrom stats pnorm
#' @importFrom stats rnorm
#' @importFrom Rdpack reprompt
#' @examples
#' #sim_brar_known_var with delayed responses follow a normal distribution with
#' #a mean of 30 days and a standard deviation of 3 days, where mean=c(8.9/100,8.74/100,8.74/100),
#' #sd=c(0.009,0.009,0.009), tp=0.5 and the minimal effect size is 0.
#' sim_brar_known_var(Pats=10,nMax=50000,TimeToOutcome=expression(rnorm(
#' length(vStartTime),30, 3)),enrollrate=0.1, N1=21,armn=3,au=c(0.973,0.973),
#' N2=189,tp=0.5,armlabel=c(1,2,3),blocksize=6,mean=c(8.9/100,8.74/100,8.74/100),
#' sd=c(0.009,0.009,0.009),minstart=21,deltaa=c(0.0005,0.0005),tpp=0,deltaa1=c(0,0),
#' mean10=0.09,mean20=0.09,mean30=0.09,sd10=0.01,sd20=0.01,sd30=0.01,n10=1,n20=1,n30=1,side='lower')
#' @references
#' \insertRef{Wathen2017}{RARtrials}
sim_brar_known_var<-function(Pats,nMax,TimeToOutcome,enrollrate,N1,armn,au,N2,tp,armlabel,blocksize,
mean,sd,minstart,deltaa,tpp,deltaa1,mean10=0,mean20=mean10,mean30=mean10,mean40=mean10,mean50=mean10,
sd10=1,sd20=sd10,sd30=sd10,sd40=sd10,sd50=sd10,n10=1,n20=n10,n30=n10,n40=n10,n50=n10,side,...){
popdat<-pop(Pats,nMax,enrollrate)
vStartTime<-sort(popdat[[3]][1:N2], decreasing = FALSE)
vOutcomeTime<-SimulateOutcomeObservedTime(vStartTime,TimeToOutcome)
assign1<-blockrand(blocksize,N1,armn,armlabel)
data1<-matrix(NA_real_,nrow=N2,ncol=5)
data1[,1]<-1:N2
data1[,2]<-vStartTime
data1[,3]<-vOutcomeTime
data1[1:N1,4]<-assign1$arm[1:N1]
for (i in 1:(N1)){
for (j in 1:armn) {
if (data1[i, 4]==j ){
data1[i,5]<-rnorm(1,mean=mean[j],
sd=sd[j])
}
}
}
armleft<-c(1:armn)
decision<-rep(NA,armn )
phi<-rep(NA,armn )
stopp<-rep(NA,armn )
mean0<-list(mean10,mean20,mean30,mean40,mean50)
sd0<-list(sd10,sd20,sd30,sd40,sd50)
n0<-list(n10,n20,n30,n40,n50)
for (jjj in minstart:N2){
if (jjj>minstart){
treat<-sample(armleft,size =1, prob = as.vector(pii))
data1[jjj,4]<-treat
data1[jjj,5]<-rnorm(1,mean=mean[treat],
sd=sd[treat])
}
if (jjj<N2){
total<-sum (as.numeric(data1[1:jjj,3])<=as.numeric(data1[jjj,2]))
}else if (jjj==N2){
total<-N2
}
result<-vector("list",length(armleft))
mat<-vector("list",armn)
for (j in 1:length(armleft)) {
if (jjj!=N2){
data2<-matrix(data1[which(as.numeric(data1[1:jjj,3])<=as.numeric(data1[jjj,2])),],ncol=5)
}else if (jjj==N2){
data2<-data1
}
tot<-as.numeric(data2[which(data2[,4]==as.numeric(armleft[j])),5])
if (identical(tot, numeric(0))){
mat[[armleft[j]]]<-matrix(c( mean0[[1]],
0,
sd0[[armleft[j]]]^2),
nrow=1)
}
mat[[armleft[j]]]<-matrix(c( (1/((length(tot)/(sd[armleft[j]]^2))+
n0[[armleft[j]]]/(sd0[[armleft[j]]]^2)))*
(mean0[[armleft[j]]]/(sd0[[armleft[j]]]^2)+sum(tot)/(sd[armleft[j]]^2)),
length(tot),
sqrt(1/((length(tot)/(sd[armleft[j]]^2))+
n0[[armleft[j]]]/(sd0[[armleft[j]]]^2))))
,nrow=1)
}
if (length(armleft)>1){
for (j in 1:length(armleft)){
#if (total>0){
if (j>1){
if (side=='lower'){
result[[j]]<-pnorm(deltaa[armleft[j]-1], mat[[1]][1,1]-mat[[armleft[j]]][1,1],
sqrt(mat[[1]][1,3]^2+mat[[armleft[j]]][1,3]^2),lower.tail=FALSE)
}else if (side=='upper'){
result[[j]]<-pnorm(deltaa[armleft[j]-1], mat[[j]][1,1]-mat[[armleft[1]]][1,1],
sqrt(mat[[1]][1,3]^2+mat[[armleft[j]]][1,3]^2),lower.tail=FALSE)
}
}else if (j==1){
result[[1]]<-0
}
}
aloo<-vector("list",length(armleft))
aloo<-alofun_kn_var(mat=mat,total=total,armleft=armleft,side=side)
}
if (jjj==N2){
resultt<-vector("list",length(armleft))
if (length(armleft)>1){
for (j in 1:length(armleft)){
# if (total>0){
if (j>1){
if (side=='lower'){
resultt[[j]]<-pnorm(deltaa1[armleft[j]-1], mat[[1]][1,1]-mat[[armleft[j]]][1,1],
sqrt(mat[[1]][1,3]^2+mat[[armleft[j]]][1,3]^2),lower.tail=FALSE)
}else if (side=='upper'){
resultt[[j]]<-pnorm(deltaa1[armleft[j]-1], mat[[armleft[j]]][1,1]-mat[[1]][1,1],
sqrt(mat[[1]][1,3]^2+mat[[armleft[j]]][1,3]^2),lower.tail=FALSE)
}
}else if (j==1){
resultt[[1]]<-0
}
}
}
}
posteriorp<-vector("list",length(armleft))
for (j in 1:length(armleft)){
if (total>0){
if (j>1){
if (side=='lower'){
posteriorp[[j]]<-pnorm(deltaa1[armleft[j]-1], mat[[1]][1,1]-mat[[armleft[j]]][1,1],
sqrt(mat[[1]][1,3]^2+mat[[armleft[j]]][1,3]^2),lower.tail=FALSE)
}else if (side=='upper'){
posteriorp[[j]]<-pnorm(deltaa1[armleft[j]-1], mat[[armleft[j]]][1,1]-mat[[1]][1,1],
sqrt(mat[[1]][1,3]^2+mat[[armleft[j]]][1,3]^2),lower.tail=FALSE)
}
}else if (j==1){
posteriorp[[j]]<-0
}
}else if (total==0 ){
if (j>1){
if (side=='lower'){
posteriorp[[j]]<-pnorm(deltaa1[armleft[j]-1], mean0[[1]]-mean0[[armleft[j]]],
sqrt(sd[1]^2+sd[armleft[j]]^2),lower.tail=FALSE)
}else if (side=='upper'){
posteriorp[[j]]<-pnorm(deltaa1[armleft[j]-1], mean0[[armleft[j]]]-mean0[[1]],
sqrt(sd[1]^2+sd[armleft[j]]^2),lower.tail=FALSE)
}
}else if (j==1){
posteriorp[[j]]<-0
}
}
}
posteriorp1<-do.call(cbind,posteriorp)
pii<-as.data.frame(do.call(cbind,aloo))
colnames(pii)<-armleft
if (jjj<N2){
sim111<-do.call(cbind,result)
colnames(sim111)<-armleft
} else if (jjj==N2) {
sim111t<-do.call(cbind,resultt)
colnames(sim111t)<-armleft
}
if ( jjj<N2){
for (k in 2:length(armleft)) {
if (sim111[1,k]<0.01 & is.na(decision[armleft[k]])){
decision[armleft[k]]<-'Futility'
stopp[armleft[k]]<-jjj
phi[armleft[k]]<-posteriorp1[1,k]
}
}
if ( 'Futility' %in% decision ){
armleft<-armleft[! armleft %in% which (decision %in% 'Futility')]
pii<- pii[,sprintf("%s",armleft)]
}
if((length(armleft)==1 & length( which (decision %in% 'Futility'))==(armn-1))){
stopp[ which (is.na(decision))]<-jjj#decision %in% NA
data11<-data1[1:jjj,]
if (is.na(decision[1])==TRUE) {#decision[1] %in% NA
decision[1]<-'Control Selected'
phi[1]<-posteriorp1[1,1]
}
return(list(decision,phi,data11,stopp))
break
}
for (yy in 1:length(armleft)){
if ( pii[colnames(pii) %in% armleft[yy]]<0.1){
pii[colnames(pii) %in% armleft[yy]]=0.1
}else if ( pii[colnames(pii) %in% armleft[yy]]>0.9){
pii[colnames(pii) %in% armleft[yy]]=0.9
}
}
if (tpp==1){
pii<-(pii^(jjj/(2*N2)))^tp
}else if (tpp==0){
pii<-pii^tp
}
pii<-pii/sum(pii)
pii<-pii[ , order(names(pii))]
armleft<-sort(armleft,decreasing = FALSE)
}else if (jjj==N2){
for (k in 2:length(armleft)) {
if (sim111t[1,k-1]>au[armleft[k]-1] & is.na(decision[armleft[k]])){
decision[armleft[k]]<-'Superiorityfinal'
stopp[armleft[k]]<-jjj
phi[armleft[k]]<-posteriorp1[1,k]
}
}
for (k in 1:length(armleft)) {
if (is.na(decision[armleft[k]] )) {
decision[armleft[k]]<-'Not Selected'
stopp[armleft[k]]<-jjj
phi[armleft[k]]<-posteriorp1[1,k]
}
}
if (length( which (decision %in% 'Futility'))==(armn-1) &
is.na(decision[1])){
decision[1]<-'Control Selected'
phi[1]<-posteriorp1[1,1]
}
data11<-data1[1:N2,]
nn<-rep(NA,armn)
for (k in 1:armn) {
nn[k]=nrow(data1[which(data1[,4]==k ),,drop=FALSE])
}
output1<-list(decision[2:armn],phi[2:armn],data11,nn)
class(output1)<-'brar'
return(output1)
# return(list(decision,phi,data11,stopp))
}
}
}
#' @export
print.brar<-function(x,...){
cat("\nFinal Decision:\n",paste(x[[1]],sep=', ',collapse=', '),"\n")
cat("\nTest Statistics:\n",paste(round(x[[2]],2),sep=', ',collapse=', '),"\n")
cat("\nAccumulated Number of Participants in Each Arm:\n",paste(x[[4]],sep=', ',collapse=', '))
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.