Nothing
## check that predictive distributions hold what they promise,
## i.e. that they describe the sum of n new data points.
set.seed(42343)
## precision at which reference and tested must match
eps <- 1e-2
## percentiles to test for
p_quants <- seq(0.1, 0.9, by = 0.1)
## number of samples used for sampling method
Nsamp <- 1e5
## define the different test cases
beta <- mixbeta(c(1, 11, 4))
betaMix <- mixbeta(c(0.8, 11, 4), c(0.2, 1, 1))
gamma <- mixgamma(c(1, 65, 50))
gammaMix <- mixgamma(rob = c(0.5, 8, 0.5), inf = c(0.5, 9, 2), param = "ms")
norm <- mixnorm(c(1, 0, 0.5), sigma = 1)
normMix <- mixnorm(c(0.2, 0, 2), c(0.8, 2, 1), sigma = 1)
n <- 25
preddist_cmp <- function(
mix,
n,
n_rng,
N = Nsamp,
qntls = p_quants,
stat = c("sum", "mean"),
Teps = eps
) {
skip_on_cran()
## sample for each draw a single hyper-parameter which is then
## used n times in the rng function to return n samples from the
## sampling distribution
stat <- match.arg(stat)
test <- replicate(N, n_rng(rmix(mix, 1)))
if (stat == "sum") test_stat <- colSums(test)
if (stat == "mean") test_stat <- colMeans(test)
quants_stest <- quantile(test_stat, qntls)
## note: in particular for the discrete/counting distributions,
## sampling gives better estimates
quants_sref <- qmix(preddist(mix, n = n), qntls)
res_sum <- abs(quants_sref - quants_stest)
## note: errors are accumulating with n, hence to check the mean,
## we scale eps with n
if (stat == "sum") expect_true(all(res_sum < n * Teps))
if (stat == "mean") expect_true(all(res_sum < Teps))
quants_test <- quantile(test[1, ], qntls)
quants_ref <- qmix(preddist(mix, n = 1), qntls)
res <- abs(quants_ref - quants_test)
expect_true(all(res < Teps))
if (inherits(mix, "betaMix")) {
## specifically test BetaBinomial (which is from Stan)
predmix <- preddist(mix, n = 30)
dens <- dmix(predmix, 0:30)
cdens <- cumsum(dens)
pc <- pmix(predmix, 0:30)
upc <- pmix(predmix, 0:30, FALSE)
expect_true(all(abs(cdens - pc) < Teps))
expect_true(all(abs(1 - cdens - upc) < Teps))
}
## test that output length of the predictive is the same as the
## input data vector, even for negative values for values outside
## the valid support of the postive only distribtions
cprob_ltest <- pmix(preddist(mix, n = 1), c(-1, quants_ref))
expect_true(length(cprob_ltest) == length(c(-1, quants_ref)))
}
test_that("Predictive for a beta evaluates correctly (binary)", {
preddist_cmp(beta, n, Curry(rbinom, n = n, size = 1))
})
test_that("Predictive for a beta mixture evaluates correctly (binary)", {
preddist_cmp(betaMix, n, Curry(rbinom, n = n, size = 1))
})
test_that("Predictive for a gamma evaluates correctly (poisson)", {
preddist_cmp(gamma, n, Curry(rpois, n = n))
})
test_that("Predictive for a gamma mixture evaluates correctly (poisson)", {
preddist_cmp(gammaMix, n, Curry(rpois, n = n), Teps = 1E-1)
})
test_that("Predictive for a normal evaluates correctly (normal)", {
preddist_cmp(norm, n, Curry(rnorm, n = n, sd = sigma(norm)), stat = "mean")
})
test_that("Predictive for a normal mixture evaluates correctly (normal)", {
preddist_cmp(
normMix,
n,
Curry(rnorm, n = n, sd = sigma(normMix)),
stat = "mean",
Teps = 1E-1
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.