Nothing
#' @title Locating shifts in phenotypic evolutionary rates
#' @usage search.shift(RR, status.type = c("clade", "sparse"),node = NULL, state
#' = NULL, cov = NULL, nrep = 1000, f = NULL)
#' @description The function \code{search.shift} (\cite{Castiglione et al.
#' 2018}) tests whether individual clades or group of tips dispersed through
#' the phylogeny evolve at different \code{\link{RRphylo}} rates as compared
#' to the rest of the tree.
#' @param RR an object fitted by the function \code{\link{RRphylo}}.
#' @param status.type whether the \code{"clade"} or \code{"sparse"} condition
#' must be tested.
#' @param node under the \code{"clade"} condition, the node/s (clades) to be
#' tested for the rate shift. If \code{node} is left unspecified, the function
#' performs under the 'auto-recognize' feature, meaning it will automatically
#' test individual clades for deviation of their rates from the background
#' rate of the rest of the tree (see details).
#' @param state the named vector of states for each tip, to be provided under
#' the \code{"sparse"} condition.
#' @param cov the covariate vector to be indicated if its effect on rate values
#' must be accounted for. Contrary to \code{\link{RRphylo}}, \code{cov} needs to be
#' as long as the number of tips of the tree.
#' @param nrep the number of simulations to be performed for the rate shift
#' test, by default \code{nrep} is set at 1000.
#' @param f the size of the smallest clade to be tested. By default, nodes
#' subtending to one tenth of the tree tips are tested.
#' @importFrom graphics symbols mtext
#' @importFrom stats sd
#' @importFrom utils globalVariables
#' @importFrom grDevices pdf dev.off
#' @export
#' @seealso \href{../doc/search.shift.html}{\code{search.shift} vignette}
#' @seealso \code{\link{overfitSS}}; \href{../doc/overfit.html#overfitSS}{\code{overfitSS} vignette}
#' @seealso \code{\link{plotShift}}; \href{../doc/Plotting-tools.html#plotShift}{\code{plotShift} vignette}
#' @details Under the 'auto-recognize' mode, \code{search.shift} automatically
#' tests individual clades (ranging in size from one half of the tree down to
#' \code{f} tips) for deviation of their rates from the background rate of the
#' rest of the tree. An inclusive clade with significantly high rates is likely
#' to include descending clades with similarly significantly high rates. Hence,
#' under 'auto-recognize' \code{search.shift} scans clades individually and
#' selects only the node subtending to the highest difference in mean absolute
#' rates as compared to the rest of the tree. If the argument \code{node}
#' (\code{"clade"} condition) is provided, the function computes the difference
#' between mean rate values of each clade and the rest of the tree, and compares
#' it to a random distribution of differences generated by shuffling rates
#' across tree branches. Additionally, if more than one \code{node} is
#' indicated, the rate difference for one clade is additionally computed by
#' excluding the rate values of the others from the rate vector of the rest of
#' the tree. Also, all the clades are considered as to be under a common rate
#' regime and compared as a single group to the rest of the tree.
#' @return Under \code{"clade"} case without specifying nodes (i.e.
#' 'auto-recognize') a list including:
#' @return \strong{$all.clades} for each detected node, the data-frame includes
#' the average rate difference (computed as the mean rate over all branches
#' subtended by the node minus the average rate for the rest of the tree) and
#' the probability that it do represent a real shift. Probabilities are
#' contrasted to simulations shuffling the rates across the tree branches for
#' a number of replicates specified by the argument \code{nrep}. Note that the
#' p-values refer to the number of times the real average rates are larger (or
#' smaller) than the rates averaged over the rest of the tree, divided by the
#' number of simulations. Hence, large rates are significantly larger than the
#' rest of the tree (at alpha = 0.05), when the probability is > 0.975; and
#' small rates are significantly small for p < 0.025.
#' @return \strong{$single.clades} the same as with 'all.clades' but restricted
#' to the largest/smallest rate values along a single lineage (i.e. nested
#' clades with smaller rate shifts are excluded).
#' @return Under \code{"clade"} condition by specifying the \code{node}
#' argument:
#' @return \strong{$all.clades.together} if more than one node is tested, this
#' specifies the average rate difference and the significance of the rate
#' shift, by considering all the specified nodes as evolving under a single
#' rate. As with the 'auto-recognize' feature, large rates are significantly
#' larger than the rest of the tree (at alpha = 0.05), when the probability is
#' > 0.975; and small rates are significantly small for p < 0.025.
#' @return \strong{$single.clades} gives the significance for individual clades
#' tested individually against the rest of the tree (\strong{$singles}) and by
#' excluding the rate values of other shifting clades from the rate vector of the rest of
#' the tree (\strong{$no.others})
#' @return Under the \code{"sparse"} condition:
#' @return \strong{$state.results} for each state, the data-frame includes the
#' average rate difference (computed as the mean rate over all leaves evolving
#' under a given state, minus the average rate for each other state or the
#' rest of the tree) and the probability that the shift is real. Large rates
#' are significantly larger (at alpha = 0.05), when the probability is >
#' 0.975; and small rates are significantly small for p < 0.025. States are
#' compared pairwise.
#' @return Under all circumstances, if \code{'cov'} values are provided to the
#' function, \code{search.shift} returns as \strong{$rates} object the vector of
#' residuals of \code{\link{RRphylo}} rates versus \code{cov} regression.
#' @return The output always has an attribute "Call" which returns an unevaluated call to the function.
#' @author Pasquale Raia, Silvia Castiglione, Carmela Serio, Alessandro
#' Mondanaro, Marina Melchionna, Mirko Di Febbraro, Antonio Profico, Francesco
#' Carotenuto
#' @references Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M.,
#' Mondanaro, A., Serio, C., Di Febbraro, M., & Raia, P.(2018). A new method
#' for testing evolutionary rate variation and shifts in phenotypic evolution.
#' \emph{Methods in Ecology and Evolution}, 9:
#' 974-983.doi:10.1111/2041-210X.12954
#' @examples
#' \dontrun{
#' data("DataOrnithodirans")
#' DataOrnithodirans$treedino->treedino
#' DataOrnithodirans$massdino->massdino
#' DataOrnithodirans$statedino->statedino
#' cc<- 2/parallel::detectCores()
#'
#' RRphylo(tree=treedino,y=massdino,clus=cc)->dinoRates
#'
#' # Case 1. Without accounting for the effect of a covariate
#'
#' # Case 1.1 "clade" condition
#' # with auto-recognize
#' search.shift(RR=dinoRates,status.type="clade")->SSauto
#' # testing two hypothetical clades
#' search.shift(RR=dinoRates,status.type="clade",node=c(696,746))->SSnode
#'
#' # Case 1.2 "sparse" condition
#' # testing the sparse condition.
#' search.shift(RR=dinoRates,status.type= "sparse",state=statedino)->SSstate
#'
#'
#' # Case 2. Accounting for the effect of a covariate
#'
#' # Case 2.1 "clade" condition
#' search.shift(RR=dinoRates,status.type= "clade",cov=massdino)->SSauto.cov
#'
#' # Case 2.2 "sparse" condition
#' search.shift(RR=dinoRates,status.type="sparse",state=statedino,cov=massdino)->SSstate.cov
#' }
search.shift<-function(RR,
status.type=c("clade","sparse"),
node=NULL,
state=NULL,
cov=NULL,
nrep=1000,
f=NULL)
{
# require(phytools)
SScore<-function(leaves,rates){
leaf.rates <- rates[match(leaves, rownames(rates),nomatch = 0),]
NCrates <- rates[which(!rownames(rates)%in%names(leaf.rates))]
leaf2NC.diff <- mean(abs(leaf.rates))-mean(abs(NCrates))
C <- length(leaf.rates)
NC <- length(rates) - C
ran.diffR <- replicate(nrep,mean(sample(abs(rates), C)) -
mean(sample(abs(rates),NC)))
p.shift <- rank(c(leaf2NC.diff, ran.diffR[-nrep]))[1]/nrep
return(cbind(diff=leaf2NC.diff,p=p.shift))
}
funcall <- match.call()
tree <- RR$tree
rates <- RR$rates[,,drop=FALSE]
betas<-RR$multiple.rates[,,drop=FALSE]
if(is.null(f)) f<-round(Ntip(tree)/10)
if(!is.null(cov)){
RRphylo(tree,cov,clus=0)->RRcova
abs(c(RRcova$aces,cov))->Y
c(rownames(RRcova$aces),names(cov))->names(Y)
covRates(Y,betas)->betas
if(ncol(betas)>1) rates <- as.matrix(apply(betas, 1, function(x) sqrt(sum(x^2)))) else rates<-betas
}
if (status.type == "clade") {
if (is.null(node)) {
st <- subtrees(tree)
len<-sapply(st,Ntip)
st <- st[which(len < (Ntip(tree)/2) & len >= round(f))]
nns <- sapply(st, function(x) getMRCA(tree, x$tip.label))
} else node->nns
allres<-do.call(rbind,lapply(nns,function(j) SScore(c(getDescendants(tree, j), tips(tree, j)),rates)))
rownames(allres)<-nns
colnames(allres)<-c("rate.difference","p.value")
l2N.init<-allres[,1]
p.init<-allres[,2]
names(l2N.init)<-names(p.init)<-nns
# data.frame(rate.difference=l2N.init[match(names(p.init),names(l2N.init))],p.value=p.init)->allres
if(is.null(node)){
if (length(p.init[p.init>=0.975|p.init<=0.025])==0) p.single <-leaf2N.diff <-NULL else{
p.single <- p.init[p.init>=0.975|p.init<=0.025]
leaf2N.diff <- l2N.init[match(names(p.single),names(l2N.init))]
}
if (length(p.single)>= 2){
ups <- p.single[p.single >= 0.975]
dws <- p.single[p.single <= 0.025]
ups.sel<-sapply(node.paths(tree,names(ups)),function(x){
x[which.max(abs(leaf2N.diff[match(x,names(leaf2N.diff))]))]
})
dws.sel<-sapply(node.paths(tree,names(dws)),function(x){
x[which.max(abs(leaf2N.diff[match(x,names(leaf2N.diff))]))]
})
ups<-ups[which(names(ups)%in%ups.sel)]
dws<-dws[which(names(dws)%in%dws.sel)]
p.single <- p.single[which(names(p.single)%in%names(c(ups, dws)))]
leaf2N.diff <- leaf2N.diff[match(names(p.single),names(leaf2N.diff))]
p.single[order(p.single)]->p.single
}
if(is.null(p.single)) single<-NULL else
data.frame(rate.difference=leaf2N.diff[match(names(p.single),names(leaf2N.diff))],
p.value=p.single)->single
res<-list(all.clades=allres,single.clades=single)
}else{
if(length(nns)==1)
res<-list(single.clades=allres) else{
totshtips<-length(unlist(lapply(nns,function(x) tips(tree,x))))
if(totshtips>Ntip(tree)*0.5){
warning("The clades under testing include more than one half of the tree species")
res<-list(single.clades=allres)
}else{
node.paths(tree,nns)->np
if(any(sapply(np,length)>1)){
nsp<-np[which(sapply(np,length)>1)]
warning(paste("Nodes",paste(sapply(nsp,function(x) paste(x,collapse="-")),collapse=" and "),
"are on the same path,only one per pair will be tested"),immediate.=TRUE)
nns<-c(unlist(np[which(sapply(np,length)==1)]),
sapply(nsp,function(x) x[which.max(abs(allres[match(x,rownames(allres)),1]))]))
}
Cbranch<-unlist(lapply(nns,function(k) getDescendants(tree,k)))
Cbranch <- unique(Cbranch[which(Cbranch>=Ntip(tree))])
Ctips<-unique(unlist(lapply(nns,function(k) tips(tree,k))))
Cleaf <- c(Cbranch, Ctips)
allclatog<-SScore(Cleaf,rates)
rownames(allclatog)<-"all"
colnames(allclatog)<-c("rate.difference","p.value")
ssc.list<-list()
for (i in 1:length(nns)) {
NOD <- nns[-i]
others <- unlist(lapply(NOD,function(k) tips(tree, k)))
des<-unlist(lapply(NOD,function(k) getDescendants(tree, k)[which(getDescendants(tree, k)>Ntip(tree))]))
otdes<- c(des, others)
Cleaf <- c(getDescendants(tree, nns[i]),unlist(tips(tree, nns[i])))
NCrates<-rates[which(!rownames(rates)%in%otdes),,drop=FALSE]
ssc.list[[i]]<-SScore(Cleaf,NCrates)
}
noothers<-do.call(rbind,ssc.list)
rownames(noothers)<-nns
colnames(noothers)<-c("rate.difference","p.value")
res<-list(all.clades.together=allclatog,single.clades=list(singles=allres,no.others=noothers))
}
}
}
} else {
state<-as.matrix(state)
state <- treedataMatch(tree, state)[[1]][,1]
frame <- data.frame(status = as.factor(state),
rate = rates[match(names(state),rownames(rates))])
sta <- tapply(abs(frame$rate), frame$status, mean)
sta <- sta[match(unique(state), names(sta))]
status.diff <- apply(combn(sta, 2), 2, diff)
if(length(unique(state)) > 2){
w <- sapply(1:length(sta),function(x) sta[x]-
mean(abs(frame[which(frame$status!=names(sta)[x]), 2])))
status.diff <- c(status.diff, w)
names(status.diff) <- c(apply(combn(names(sta),2), 2, function(x) paste(x[2], x[1], sep = "_")),
names(sta))
} else names(status.diff)<-paste(combn(names(sta), 2)[2:1],collapse="_")
status.diffS <- matrix(ncol = length(status.diff),
nrow = nrep)
for (i in 1:nrep) {
s.ran <- sample(frame$status)
s.frame <- data.frame(s.ran, frame$rate)
sta <- tapply(abs(frame$rate), s.ran, mean)
sta <- sta[match(unique(state), names(sta))]
SD <- apply(combn(sta, 2), 2, diff)
if(length(unique(state)) > 2){
w <- sapply(1:length(sta),function(x) sta[x]-
mean(abs(frame[which(s.frame$s.ran!=names(sta)[x]), 2])))
status.diffS[i, ] <- c(SD, w)
}else status.diffS[i, ] <- SD
}
colnames(status.diffS) <- names(status.diff)
p.status.diff<-sapply(1:length(status.diff),function(i)
rank(c(status.diff[i],status.diffS[-nrep, i]))[1]/nrep)
names(p.status.diff) <- names(status.diff)
if(any(colnames(status.diffS)%in%unique(state)))
pldata<-status.diffS[,which(colnames(status.diffS)%in%unique(state))] else
pldata<-status.diffS
res<-list(state.results=data.frame(rate.difference=status.diff[match(names(p.status.diff),names(status.diff))],p.status.diff),
plotData=pldata)
}
if(!is.null(cov)) {
if(!is.null(res$plotData)){
res<-c(res[which(names(res)!="plotData")],rates=list(rates),res[which(names(res)=="plotData")])
} else res<-c(res,rates=list(rates))
}
class(res)<-c("RRphyloList","list")
attr(res,"hidden")<-"plotData"
attr(res,"Call")<-funcall
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.