Description Details References See Also Examples
Here, multivariate and vector-valued covariance models are presented.
Bivariate covariance models
RMbicauchy | a bivariate Cauchy model |
RMbiwm | full bivariate Whittle-Matern model (stationary and isotropic) |
RMbigneiting | bivariate Gneiting model (stationary and isotropic) |
RMbistable | a bivariate stable model |
Physically motivated, vector valued covariance and variogram models
RMcurlfree | curlfree (spatial) vector-valued field (stationary and anisotropic) |
RMdivfree | divergence free (spatial) vector-valued field (stationary and anisotropic) |
RMkolmogorov | Kolmogorov's model of turbulence |
RMvector | vector-valued field (combining RMcurlfree and RMdivfree )
|
Multivariate covariance models
RMdelay | delay effect model (stationary) |
RMderiv | field and its gradient |
RMmatrix | linear model of coregionalization |
RMparswm | multivariate Whittle-Matern model (stationary and isotropic) |
Operators
RMcov | covariance structure given by a multivariate variogram |
RMexponential | functional returning exp(C) |
RMmatrix | linear model of coregionalization |
RMmqam | multivariate quasi-arithmetic mean (stationary) |
RMschur | element-wise product with a positive definite matrix |
RMtbm | turning bands operator |
Trend models
RMtrend | for explicit trend modelling |
R.models | for implicit trend modelling |
R.c | binding univariate trend models into a vector |
Chiles, J.-P. and Delfiner, P. (1999) Geostatistics. Modeling Spatial Uncertainty. New York: Wiley.
Schlather, M. (2011) Construction of covariance functions and unconditional simulation of random fields. In Porcu, E., Montero, J.M. and Schlather, M., Space-Time Processes and Challenges Related to Environmental Problems. New York: Springer.
Schlather, M., Malinowski, A., Menck, P.J., Oesting, M. and Strokorb, K. (2015) Analysis, simulation and prediction of multivariate random fields with package RandomFields. Journal of Statistical Software, 63 (8), 1-25, url = ‘http://www.jstatsoft.org/v63/i08/’
Wackernagel, H. (2003) Multivariate Geostatistics. Berlin: Springer, 3rd edition.
RFformula
, RMmodels
,
RM
,
RMmodelsAdvanced
‘multivariate’, a vignette for multivariate geostatistics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
n <- 100
x <- runif(n=n, min=1, max=50)
y <- runif(n=n, min=1, max=50)
rho <- matrix(nc=2, c(1, -0.8, -0.8, 1))
model <- RMparswmX(nudiag=c(0.5, 0.5), rho=rho)
## generation of artifical data
dta <- RFsimulate(model = model, x=x, y=y, grid=FALSE)
## introducing some NAs ...
dta@data$variable1[1:10] <- NA
if (interactive()) dta@data$variable2[90:100] <- NA
plot(dta)
## co-kriging
x <- y <- seq(0, 50, 1)
k <- RFinterpolate(model, x=x, y=y, data= dta)
plot(k, dta)
## conditional simulation
z <- RFsimulate(model, x=x, y=y, data= dta) ## takes a while
plot(z, dta)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.