RMmodelsMultivariate: Multivariate models

Description Details References See Also Examples

Description

Here, multivariate and vector-valued covariance models are presented.

Details

Bivariate covariance models

RMbicauchy a bivariate Cauchy model
RMbiwm full bivariate Whittle-Matern model (stationary and isotropic)
RMbigneiting bivariate Gneiting model (stationary and isotropic)
RMbistable a bivariate stable model

Physically motivated, vector valued covariance and variogram models

RMcurlfree curlfree (spatial) vector-valued field (stationary and anisotropic)
RMdivfree divergence free (spatial) vector-valued field (stationary and anisotropic)
RMkolmogorov Kolmogorov's model of turbulence
RMvector vector-valued field (combining RMcurlfree and RMdivfree)

Multivariate covariance models

RMdelay delay effect model (stationary)
RMderiv field and its gradient
RMmatrix linear model of coregionalization
RMparswm multivariate Whittle-Matern model (stationary and isotropic)

Operators

RMcov covariance structure given by a multivariate variogram
RMexponential functional returning exp(C)
RMmatrix linear model of coregionalization
RMmqam multivariate quasi-arithmetic mean (stationary)
RMschur element-wise product with a positive definite matrix
RMtbm turning bands operator

Trend models

RMtrend for explicit trend modelling
R.models for implicit trend modelling
R.c binding univariate trend models into a vector

References

See Also

RFformula, RMmodels, RM, RMmodelsAdvanced

multivariate’, a vignette for multivariate geostatistics

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

n <- 100
x <- runif(n=n, min=1, max=50)
y <- runif(n=n, min=1, max=50)

rho <- matrix(nc=2, c(1, -0.8, -0.8, 1))
model <- RMparswmX(nudiag=c(0.5, 0.5), rho=rho)

## generation of artifical data
dta <- RFsimulate(model = model, x=x, y=y, grid=FALSE)

## introducing some NAs ...
dta@data$variable1[1:10] <- NA
if (interactive()) dta@data$variable2[90:100] <- NA

plot(dta)


## co-kriging
x <- y <- seq(0, 50, 1)

k <- RFinterpolate(model, x=x, y=y, data= dta)
plot(k, dta)

## conditional simulation
z <- RFsimulate(model, x=x, y=y, data= dta) ## takes a while
plot(z, dta)

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.