| est.clustering | R Documentation |
Instead of directly using neighborhood information, est.clustering adopts hierarchical
neighborhood information using hclust by recursively merging leafs
over the range of radii.
est.clustering(X, kmin = round(sqrt(nrow(X))))
X |
an (n\times p) matrix or data frame whose rows are observations. |
kmin |
minimal number of neighborhood size to search over. |
a named list containing containing
estimated intrinsic dimension.
Kisung You
eriksson_estimating_2012Rdimtools
## create 'swiss' roll dataset
X = aux.gensamples(dname="swiss")
## try different k values
out1 = est.clustering(X, kmin=5)
out2 = est.clustering(X, kmin=25)
out3 = est.clustering(X, kmin=50)
## print the results
line1 = paste0("* est.clustering : kmin=5 gives ",round(out1$estdim,2))
line2 = paste0("* est.clustering : kmin=25 gives ",round(out2$estdim,2))
line3 = paste0("* est.clustering : kmin=50 gives ",round(out3$estdim,2))
cat(paste0(line1,"\n",line2,"\n",line3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.