est.clustering | R Documentation |
Instead of directly using neighborhood information, est.clustering
adopts hierarchical
neighborhood information using hclust
by recursively merging leafs
over the range of radii.
est.clustering(X, kmin = round(sqrt(nrow(X))))
X |
an (n\times p) matrix or data frame whose rows are observations. |
kmin |
minimal number of neighborhood size to search over. |
a named list containing containing
estimated intrinsic dimension.
Kisung You
eriksson_estimating_2012Rdimtools
## create 'swiss' roll dataset X = aux.gensamples(dname="swiss") ## try different k values out1 = est.clustering(X, kmin=5) out2 = est.clustering(X, kmin=25) out3 = est.clustering(X, kmin=50) ## print the results line1 = paste0("* est.clustering : kmin=5 gives ",round(out1$estdim,2)) line2 = paste0("* est.clustering : kmin=25 gives ",round(out2$estdim,2)) line3 = paste0("* est.clustering : kmin=50 gives ",round(out3$estdim,2)) cat(paste0(line1,"\n",line2,"\n",line3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.