do.fosmod | R Documentation |
The FOS-MOD algorithm \insertCitewei_2007_FeatureSubsetSelectionRdimtools is an unsupervised algorithm that selects a desired number of features in a forward manner by ranking the features using the squared correlation coefficient and sequential orthogonalization.
do.fosmod(X, ndim = 2, ...)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a length-ndim vector of indices with highest scores.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid <- sample(1:150, 50) iris.dat <- as.matrix(iris[subid,1:4]) iris.lab <- as.factor(iris[subid,5]) ## compare with other methods out1 = do.fosmod(iris.dat) out2 = do.lscore(iris.dat) out3 = do.fscore(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="FOS-MOD") plot(out2$Y, pch=19, col=iris.lab, main="Laplacian Score") plot(out3$Y, pch=19, col=iris.lab, main="Fisher Score") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.