do.procrustes | R Documentation |
do.procrustes
selects a set of features that best aligns PCA's coordinates in the embedded low dimension.
It iteratively selects each variable that minimizes Procrustes distance between configurations.
do.procrustes(X, ndim = 2, intdim = (ndim - 1), cor = TRUE)
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
intdim |
intrinsic dimension of PCA to be applied. It should be smaller than |
cor |
mode of eigendecomposition. |
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a length-ndim vector of indices with highest scores.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
krzanowski_selection_1987aRdimtools
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) iris.dat = as.matrix(iris[,1:4]) iris.lab = as.factor(iris[,5]) ## try different strategy out1 = do.procrustes(iris.dat, cor=TRUE) out2 = do.procrustes(iris.dat, cor=FALSE) out3 = do.mifs(iris.dat, iris.lab, beta=0) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1, 3)) plot(out1$Y, pch=19, col=iris.lab, main="PCA with Covariance") plot(out2$Y, pch=19, col=iris.lab, main="PCA with Correlation") plot(out3$Y, pch=19, col=iris.lab, main="MIFS") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.