do.rsr | R Documentation |
Given a data matrix X where observations are stacked in a row-wise manner, Regularized Self-Representation (RSR) aims at finding a solution to following optimization problem
\textrm{min}~ \|X-XW\|_{2,1} + λ \| W \|_{2,1}
where \|W\|_{2,1} = ∑_{i=1}^{m} \|W_{i:} \|_2 is an \ell_{2,1} norm that imposes row-wise sparsity constraint.
do.rsr(X, ndim = 2, lbd = 1)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
lbd |
nonnegative number to control the degree of self-representation by imposing row-sparsity. |
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a length-ndim vector of indices with highest scores.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
zhu_unsupervised_2015Rdimtools
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) #### try different lbd combinations out1 = do.rsr(X, lbd=0.1) out2 = do.rsr(X, lbd=1) out3 = do.rsr(X, lbd=10) #### visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="RSR::lbd=0.1") plot(out2$Y, pch=19, col=label, main="RSR::lbd=1") plot(out3$Y, pch=19, col=label, main="RSR::lbd=10") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.