| do.adr | R Documentation |
Adaptive Dimension Reduction \insertCiteding_adaptive_2002Rdimtools iteratively finds the best subspace to perform data clustering. It can be regarded as one of remedies for clustering in high dimensional space. Eigenvectors of a between-cluster scatter matrix are used as basis of projection.
do.adr(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
do.ldakm
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## compare ADR with other methods
outADR = do.adr(X)
outPCA = do.pca(X)
outLDA = do.lda(X, label)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outADR$Y, col=label, pch=19, main="ADR")
plot(outPCA$Y, col=label, pch=19, main="PCA")
plot(outLDA$Y, col=label, pch=19, main="LDA")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.