do.uwdfs | R Documentation |
Built upon do.wdfs
, this method selects features step-by-step to opt out the redundant sets
by iteratively update feature scores via scaling by the correlation between target and previously chosen variables.
do.uwdfs( X, label, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten") )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a length-ndim vector of indices with highest scores.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
liao_worstcase_2019Rdimtools
do.wdfs
## use iris data ## it is known that feature 3 and 4 are more important. data(iris) set.seed(100) subid = sample(1:150,50) iris.dat = as.matrix(iris[subid,1:4]) iris.lab = as.factor(iris[subid,5]) ## compare with other algorithms out1 = do.lda(iris.dat, iris.lab) out2 = do.wdfs(iris.dat, iris.lab) out3 = do.uwdfs(iris.dat, iris.lab) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=iris.lab, main="LDA") plot(out2$Y, pch=19, col=iris.lab, main="WDFS") plot(out3$Y, pch=19, col=iris.lab, main="UWDFS") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.