| do.cscore | R Documentation |
Constraint Score \insertCitezhang_constraint_2008aRdimtools is a filter-type algorithm for feature selection using pairwise constraints. It first marks all pairwise constraints as same- and different-cluster and construct a feature score for both constraints. It takes ratio or difference of feature score vectors and selects the indices with smallest values.
do.cscore(X, label, ndim = 2, ...)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a length-p vector of constraint scores. Indices with smallest values are selected.
a length-ndim vector of indices with highest scores.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
do.cscoreg
## use iris data
## it is known that feature 3 and 4 are more important.
data(iris)
iris.dat = as.matrix(iris[,1:4])
iris.lab = as.factor(iris[,5])
## try different strategy
out1 = do.cscore(iris.dat, iris.lab, score="ratio")
out2 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0)
out3 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0.5)
out4 = do.cscore(iris.dat, iris.lab, score="difference", lambda=1)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(out1$Y, col=iris.lab, main="ratio")
plot(out2$Y, col=iris.lab, main="diff/lambda=0")
plot(out3$Y, col=iris.lab, main="diff/lambda=0.5")
plot(out4$Y, col=iris.lab, main="diff/lambda=1")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.