| do.enet | R Documentation |
Elastic Net is a regularized regression method by solving
\textrm{min}_{\beta} ~ \frac{1}{2}\|X\beta-y\|_2^2 + \lambda_1 \|\beta \|_1 + \lambda_2 \|\beta \|_2^2
where y iis response variable in our method. The method can be used in feature selection like LASSO.
do.enet(X, response, ndim = 2, lambda1 = 1, lambda2 = 1)
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
lambda1 |
|
lambda2 |
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a length-ndim vector of indices with highest scores.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
zou_regularization_2005Rdimtools
## generate swiss roll with auxiliary dimensions
## it follows reference example from LSIR paper.
set.seed(100)
n = 123
theta = runif(n)
h = runif(n)
t = (1+2*theta)*(3*pi/2)
X = array(0,c(n,10))
X[,1] = t*cos(t)
X[,2] = 21*h
X[,3] = t*sin(t)
X[,4:10] = matrix(runif(7*n), nrow=n)
## corresponding response vector
y = sin(5*pi*theta)+(runif(n)*sqrt(0.1))
## try different regularization parameters
out1 = do.enet(X, y, lambda1=0.01)
out2 = do.enet(X, y, lambda1=1)
out3 = do.enet(X, y, lambda1=100)
## extract embeddings
Y1 = out1$Y; Y2 = out2$Y; Y3 = out3$Y
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(Y1, pch=19, main="ENET::lambda1=0.01")
plot(Y2, pch=19, main="ENET::lambda1=1")
plot(Y3, pch=19, main="ENET::lambda1=100")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.