ko.test | R Documentation |
Differential analysis or Correlation analysis for KO-abundance table
ko.test(
kodf,
group,
metadata = NULL,
method = "wilcox.test",
pattern = NULL,
p.adjust.method1 = "none",
threads = 1,
verbose = TRUE
)
kodf |
KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples. |
group |
The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order. |
metadata |
sample information data.frame contains group |
method |
the type of test. Default is 'wilcox.test'. Allowed values include:
|
pattern |
a named vector matching the group, e.g. c('G1'=1,'G2'=3,'G3'=2), use the correlation analysis with specific pattern to calculate p-value. |
p.adjust.method1 |
p.adjust.method for 'ko.test', see |
threads |
default 1 |
verbose |
logical |
ko_pvalue data.frame
Other GRSA:
combine_rs_res()
,
get_reporter_score()
,
pvalue2zs()
,
reporter_score()
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.