Nothing
# Copyright (c) Meta Platforms, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
####################################################################
#' Check Models Convergence
#'
#' \code{robyn_converge()} consumes \code{robyn_run()} outputs
#' and calculate convergence status and builds convergence plots.
#' Convergence is calculated by default using the following criteria
#' (having kept the default parameters: sd_qtref = 3 and med_lowb = 2):
#' \describe{
#' \item{Criteria #1:}{Last quantile's standard deviation < first 3
#' quantiles' mean standard deviation}
#' \item{Criteria #2:}{Last quantile's absolute median < absolute first
#' quantile's absolute median - 2 * first 3 quantiles' mean standard
#' deviation}
#' }
#' Both mentioned criteria have to be satisfied to consider MOO convergence.
#'
#' @param OutputModels List. Output from \code{robyn_run()}.
#' @param n_cuts Integer. Default to 20 (5\% cuts each).
#' @param sd_qtref Integer. Reference quantile of the error convergence rule
#' for standard deviation (Criteria #1). Defaults to 3.
#' @param med_lowb Integer. Lower bound distance of the error convergence rule
#' for median. (Criteria #2). Default to 3.
#' @param nrmse_win Numeric vector. Lower and upper quantiles thresholds to
#' winsorize NRMSE. Set values within [0,1]; default: c(0, 0.998) which is 1/500.
#' @param ... Additional parameters
#' @examples
#' \dontrun{
#' # Having OutputModels results
#' MOO <- robyn_converge(
#' OutputModels,
#' n_cuts = 10,
#' sd_qtref = 3,
#' med_lowb = 3
#' )
#' }
#' @return List. Plots and MOO convergence results.
#' @export
robyn_converge <- function(OutputModels,
n_cuts = 20, sd_qtref = 3, med_lowb = 2,
nrmse_win = c(0, 0.998), ...) {
stopifnot(n_cuts > min(c(sd_qtref, med_lowb)) + 1)
# Gather all trials
get_trials <- which(names(OutputModels) %in% paste0("trial", seq(OutputModels$trials)))
df <- bind_rows(lapply(OutputModels[get_trials], function(x) x$resultCollect$resultHypParam))
calibrated <- isTRUE(sum(df$mape) > 0)
# Calculate deciles
dt_objfunc_cvg <- tidyr::gather(df, "error_type", "value", any_of(c("nrmse", "decomp.rssd", "mape"))) %>%
select(.data$ElapsedAccum, .data$trial, .data$error_type, .data$value) %>%
arrange(.data$trial, .data$ElapsedAccum) %>%
filter(.data$value > 0, is.finite(.data$value)) %>%
mutate(error_type = toupper(.data$error_type)) %>%
group_by(.data$error_type, .data$trial) %>%
mutate(iter = row_number()) %>%
ungroup() %>%
mutate(cuts = cut(
.data$iter,
breaks = seq(0, max(.data$iter), length.out = n_cuts + 1),
labels = round(seq(max(.data$iter) / n_cuts, max(.data$iter), length.out = n_cuts)),
include.lowest = TRUE, ordered_result = TRUE, dig.lab = 6
))
# Calculate standard deviations and absolute medians on each cut
errors <- dt_objfunc_cvg %>%
group_by(.data$error_type, .data$cuts) %>%
summarise(
n = n(),
median = median(.data$value),
std = sd(.data$value),
.groups = "drop"
) %>%
group_by(.data$error_type) %>%
mutate(
med_var_P = abs(round(100 * (.data$median - lag(.data$median)) / .data$median, 2))
) %>%
group_by(.data$error_type) %>%
mutate(
first_med = abs(dplyr::first(.data$median)),
first_med_avg = abs(mean(.data$median[1:sd_qtref])),
last_med = abs(dplyr::last(.data$median)),
first_sd = dplyr::first(.data$std),
first_sd_avg = mean(.data$std[1:sd_qtref]),
last_sd = dplyr::last(.data$std)
) %>%
mutate(
med_thres = abs(.data$first_med - med_lowb * .data$first_sd_avg),
flag_med = abs(.data$median) < .data$med_thres,
flag_sd = .data$std < .data$first_sd_avg
)
conv_msg <- NULL
for (obj_fun in unique(errors$error_type)) {
temp.df <- filter(errors, .data$error_type == obj_fun) %>%
mutate(median = signif(median, 2))
last.qt <- tail(temp.df, 1)
greater <- ">" # intToUtf8(8814)
temp <- glued(
paste(
"{error_type} {did}converged: sd@qt.{quantile} {sd} {symb_sd} {sd_threh} &",
"|med@qt.{quantile}| {qtn_median} {symb_med} {med_threh}"
),
error_type = last.qt$error_type,
did = ifelse(last.qt$flag_sd & last.qt$flag_med, "", "NOT "),
sd = signif(last.qt$last_sd, 2),
symb_sd = ifelse(last.qt$flag_sd, "<=", greater),
sd_threh = signif(last.qt$first_sd_avg, 2),
quantile = n_cuts,
qtn_median = signif(last.qt$last_med, 2),
symb_med = ifelse(last.qt$flag_med, "<=", greater),
med_threh = signif(last.qt$med_thres, 2)
)
conv_msg <- c(conv_msg, temp)
}
message(paste(paste("-", conv_msg), collapse = "\n"))
subtitle <- sprintf(
"%s trial%s with %s iterations%s using %s",
max(df$trial), ifelse(max(df$trial) > 1, "s", ""), max(dt_objfunc_cvg$cuts),
ifelse(max(df$trial) > 1, " each", ""), OutputModels$nevergrad_algo
)
moo_distrb_plot <- dt_objfunc_cvg %>%
mutate(id = as.integer(.data$cuts)) %>%
mutate(cuts = factor(.data$cuts, levels = rev(levels(.data$cuts)))) %>%
group_by(.data$error_type) %>%
mutate(value = lares::winsorize(.data$value, nrmse_win), na.rm = TRUE) %>%
ggplot(aes(x = .data$value, y = .data$cuts, fill = -.data$id)) +
ggridges::geom_density_ridges(
scale = 2.5, col = "white", quantile_lines = TRUE, quantiles = 2, alpha = 0.7
) +
facet_grid(. ~ .data$error_type, scales = "free") +
scale_fill_distiller(palette = "GnBu") +
guides(fill = "none") +
theme_lares(background = "white", ) +
labs(
x = "Objective functions", y = "Iterations [#]",
title = "Objective convergence by iterations quantiles",
subtitle = subtitle,
caption = paste(conv_msg, collapse = "\n")
)
moo_cloud_plot <- df %>%
mutate(nrmse = lares::winsorize(.data$nrmse, nrmse_win), na.rm = TRUE) %>%
ggplot(aes(
x = .data$nrmse, y = .data$decomp.rssd, colour = .data$ElapsedAccum
)) +
scale_colour_gradient(low = "skyblue", high = "navyblue") +
labs(
title = ifelse(!calibrated, "Multi-objective evolutionary performance",
"Multi-objective evolutionary performance with calibration"
),
subtitle = subtitle,
x = ifelse(max(nrmse_win) == 1, "NRMSE", sprintf("NRMSE [Winsorized %s]", paste(nrmse_win, collapse = "-"))),
y = "DECOMP.RSSD",
colour = "Time [s]",
caption = paste(conv_msg, collapse = "\n")
) +
theme_lares(background = "white", )
if (calibrated) {
moo_cloud_plot <- moo_cloud_plot +
geom_point(data = df, aes(size = .data$mape, alpha = 1 - .data$mape)) +
guides(alpha = "none")
} else {
moo_cloud_plot <- moo_cloud_plot + geom_point()
}
cvg_out <- list(
moo_distrb_plot = moo_distrb_plot,
moo_cloud_plot = moo_cloud_plot,
errors = errors,
conv_msg = conv_msg
)
attr(cvg_out, "sd_qtref") <- sd_qtref
attr(cvg_out, "med_lowb") <- med_lowb
return(invisible(cvg_out))
}
test_cvg <- function() {
# Experiment with gamma distribution fitting
gamma_mle <- function(params, x) {
gamma_shape <- params[[1]]
gamma_scale <- params[[2]]
# Negative log-likelihood
return(-sum(dgamma(x, shape = gamma_shape, scale = gamma_scale, log = TRUE)))
}
f_geo <- function(a, r, n) {
for (i in 2:n) a[i] <- a[i - 1] * r
return(a)
}
seq_nrmse <- f_geo(5, 0.7, 100)
df_nrmse <- data.frame(x = 1:100, y = seq_nrmse, type = "true")
mod_gamma <- nloptr(
x0 = c(1, 1), eval_f = gamma_mle, lb = c(0, 0),
x = seq_nrmse,
opts = list(algorithm = "NLOPT_LN_SBPLX", maxeval = 1e5)
)
gamma_params <- mod_gamma$solution
seq_nrmse_gam <- 1 / dgamma(seq_nrmse, shape = gamma_params[[1]], scale = gamma_params[[2]])
seq_nrmse_gam <- seq_nrmse_gam / (max(seq_nrmse_gam) - min(seq_nrmse_gam))
seq_nrmse_gam <- max(seq_nrmse) * seq_nrmse_gam
range(seq_nrmse_gam)
range(seq_nrmse)
df_nrmse_gam <- data.frame(x = 1:100, y = seq_nrmse_gam, type = "pred")
df_nrmse <- bind_rows(df_nrmse, df_nrmse_gam)
p <- ggplot(df_nrmse, aes(.data$x, .data$y, color = .data$type)) +
geom_line()
return(p)
# g_low = qgamma(0.025, shape=gamma_params[[1]], scale= gamma_params[[2]])
# g_up = qgamma(0.975, shape=gamma_params[[1]], scale= gamma_params[[2]])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.