inst/doc/Runuran.R

### R code from vignette source 'Runuran.Rnw'

###################################################
### code chunk number 1: Runuran.Rnw:158-159
###################################################
library("Runuran")


###################################################
### code chunk number 2: specialgenerators.Rnw:40-45
###################################################
## Draw sample of size 10 from standard Gaussian distribution 
urnorm(10)

## Draw sample from truncated non-standard Gaussian distribution 
urnorm(10, mean = 1, sd = 0.5, lb = 2, ub = Inf)


###################################################
### code chunk number 3: specialgenerators.Rnw:52-53
###################################################
urnorm


###################################################
### code chunk number 4: universal.Rnw:24-38
###################################################
## Use method TDR (Transformed Density Rejection) to 
## draw a sample of size 10 from a hyperbolic distribution with PDF
##   f(x) = const * exp(-sqrt(1+x^2))  on domain (-Inf,Inf).

## We first have to define a function that returns the density.
pdf <- function (x) { exp(-sqrt(1+x^2)) }

## Next create the UNU.RAN object.
gen <- tdr.new(pdf=pdf, lb=-Inf, ub=Inf)

## Now we can use this object to draw the sample.
## (Of course we can repeat this step as often as required.)
x <- ur(gen,10)
x


###################################################
### code chunk number 5: universal.Rnw:45-46
###################################################
gen


###################################################
### code chunk number 6: universal.Rnw:54-65
###################################################
## Use method ARS (Adaptive Rejection Sampling) to 
## draw a sample of size 10 from a truncated Gaussian on [100,Inf).

## Define a function that returns the log-density.
lpdf <- function (x) { -0.5*x^2 }

## Create UNU.RAN object.
gen <- ars.new(logpdf=lpdf, lb=100, ub=Inf)

## Draw sample.
ur(gen,10)


###################################################
### code chunk number 7: universal.Rnw:70-78
###################################################
## Draw a sample from Gaussian distribution with 
## mean 2 and standard deviation 5.

## Create UNU.RAN object.
## Use R function 'dnorm(x, mean=2, sd=5, log=TRUE)' as density.
gen <- ars.new(logpdf=dnorm, lb=-Inf, ub=Inf,  mean=2, sd=5, log=TRUE)
## Draw sample.
ur(gen,10)


###################################################
### code chunk number 8: universal.Rnw:84-93
###################################################
## Compute quantiles for hyperbolic distribution with PDF
##   f(x) = const * exp(-sqrt(1+x^2))  on domain (-Inf,Inf).
## Thus we need an inversion method. We choose PINV.

## Create UNU.RAN object.
pdf <- function (x) { exp(-sqrt(1+x^2)) }
gen <- pinv.new(pdf=pdf, lb=0, ub=Inf, uresolution=1e-14)
## Get some quantiles
uq(gen, c(0.005, 0.01, 0.025, 0.05, 0.5, 0.95, 0.975, 0.99, 0.995))


###################################################
### code chunk number 9: universal.Rnw:100-118
###################################################
## Compute density for a given distribution or generator object.
## However, this only works when the density is already stored in 
## the object.

## Use distribution object
distr <- unuran.cont.new(pdf=function(x){exp(-x)}, lb=0,ub=Inf)
x <- ud(distr, 0:5)
x

## Use generator object
gen <- pinvd.new(distr)
x <- ud(gen, 0:5)
x

## Method PINV can also be used to estimate the CDF of the distribution
x <- up(gen, 0:5)
x



###################################################
### code chunk number 10: distributions.Rnw:22-33
###################################################
## Create an object for a gamma distribution with shape parameter 5.
distr <- udgamma(shape=5)

## Create the UNU.RAN generator object. use method PINV (inversion).
gen <- pinvd.new(distr)

## Draw a sample of size 100
x <- ur(gen,100)

## Compute some quantiles for Monte Carlo methods
x <- uq(gen, (1:9)/10)


###################################################
### code chunk number 11: advanced.Rnw:148-172
###################################################
## Use method TDR (Transformed Density Rejection) to 
## draw a sample of size 10 from a hyperbolic distribution with PDF
##   f(x) = const * exp(-sqrt(1+x^2)) 
## restricted to domain [-1,2].

## We first have to define functions that return the log-density and
## its derivative, respectively. (We also could use the density itself.)
lf  <- function (x) { -sqrt(1+x^2) }
dlf <- function (x) { -x/sqrt(1+x^2) }

## Next create the continuous distribution object.
d <- unuran.cont.new(pdf=lf, dpdf=dlf, islog=TRUE, lb=-1, ub=2,
                     name="hyperbolic")

## Create UNU.RAN object. We choose method TDR with 
## immediate acceptance (IA) and parameter c=0.
gen <- unuran.new(distr=d, method="tdr; variant_ia; c=0")

## Now we can use this object to draw the sample.
## (Of course we can repeat this step as often as required.)
ur(gen,10)

## Here is some information about our generator object.
unuran.details(gen)


###################################################
### code chunk number 12: advanced.Rnw:180-195
###################################################
## Use method DGT (Discrete Guide Table method) to 
## draw a sample of size 10 from a Binomial distribution given
## its probability vector.

## Create instances of a discrete distribution object
d <- unuran.discr.new(pv=dbinom(0:100,100,0.4), lb=0, name="binomial(100,0.4)")

## Create UNU.RAN object. We choose method DGT.
gen <- unuran.new(distr=d, method="dgt")

## Now we can use this object to draw the sample.
ur(gen,10)

## Here is some information about our generator object.
unuran.details(gen)


###################################################
### code chunk number 13: advanced.Rnw:204-222
###################################################
## Use method DSROU (Discrete Simple Ratio-Of-Uniforms method) to 
## draw a sample of size 10 from a discrete distribution with
## given PMF, mode, and sum.

## Define functions that return the PMF.
f  <- function (x) { 0.4 * (1-0.4)^x }

## Create the continuous distribution object.
d <- unuran.discr.new(pmf=f, lb=0, ub=Inf, mode=0, sum=1)

## Create UNU.RAN object. We choose method DARI with squeezes.
gen <- unuran.new(distr=d, method="dari; squeeze=on")

## Now we can use this object to draw the sample.
ur(gen,10)

## Here is some information about our generator object.
unuran.details(gen)


###################################################
### code chunk number 14: advanced.Rnw:230-249
###################################################
## Use method VNROU (Multivariate Naive Ratio-Of-Uniforms) to 
## draw a sample of size 5 from a bivariate distribution
## with given PDF, mode and domain.

## Define functions that return the PDF.
f  <- function (x) { exp(-sum(x^4)) }

## Create the continuous distribution object.
d <- unuran.cmv.new(dim=2, pdf=f, mode=c(0,0), ll=c(-1,-1), ur=c(1,1),
                    name="bivariate power-exponential")

## Create UNU.RAN object. We choose method VNROU with parameter r=0.5.
gen <- unuran.new(distr=d, method="vnrou; r=0.5")

## Now we can use this object to draw the sample.
ur(gen,5)

## Here is some information about our generator object.
unuran.details(gen)


###################################################
### code chunk number 15: advanced.Rnw:259-263 (eval = FALSE)
###################################################
## ## Try to use method TDR with missing data.
## lf  <- function (x) { -sqrt(1+x^2) }
## d <- unuran.cont.new(pdf=lf, lb=-Inf, ub=Inf, islog=TRUE)
## gen <- unuran.new(distr=d, method="tdr")


###################################################
### code chunk number 16: fig:rejection
###################################################
x <- c((0:31)/10,3.1416)
y <- round(sin(c((0:31)/10,3.1416)),3)
pdf.sin <- paste("(",paste(x,y,sep=",",collapse=") ("),")",sep="",collapse="")
rm(x,y)


###################################################
### code chunk number 17: pitfalls.Rnw:47-51
###################################################
pdf <- function (x) { x^2 / (1+x^2)^2 }
gen <- pinv.new(pdf=pdf,lb=0,ub=Inf,  center=1 )    ## Add 'center'
x <- ur(gen,10)
x


###################################################
### code chunk number 18: pitfalls.Rnw:74-86
###################################################
## create a unuran object using method 'PINV'
gen <- pinv.new(dnorm,lb=0,ub=Inf)

## such an object can be packed
unuran.packed(gen) <- TRUE

## it can be still used to draw a random sample
x <- ur(gen,10)
x

## we also can check whether a unuran object is packed
unuran.packed(gen)

Try the Runuran package in your browser

Any scripts or data that you put into this service are public.

Runuran documentation built on May 2, 2019, 6:31 a.m.