Nothing
context("FunKeras")
skip_on_cran()
test_that("test mnist result", {
kerasConf <- getKerasConf()
kerasConf$verbose <- 0
cfg <- getModelConf(list(model="dl"))
x <- matrix(cfg$default, nrow=1)
transformFun <- cfg$transformations
types <- cfg$type
lower <- cfg$lower
upper <- cfg$upper
res <- evalKerasMnist(x, kerasConf, data=getMnistData(kerasConf))
### we have train, val, test and for each loss and acc = 6 values
### plus one valus, which is copied to the first position, all together 7:
expect_equal(length(res), 7)
})
test_that("test funKerasMnist", {
set.seed(1)
kerasConf <- getKerasConf()
kerasConf$verbose <- 0
cfg <- getModelConf(list(model="dl"))
x <- matrix(cfg$default, nrow=1)
transformFun <- cfg$transformations
types <- cfg$type
lower <- cfg$lower
upper <- cfg$upper
res <- funKerasMnist(x, kerasConf = kerasConf, data = getMnistData(kerasConf))
expect_equal(length(res), 7)
})
test_that("test funKerasMnistDummy", {
set.seed(1)
kerasConf <- getKerasConf()
kerasConf$verbose <- 0
kerasConf$resDummy <- TRUE
cfg <- getModelConf(list(model="dl"))
x <- matrix(cfg$default, nrow=1)
transformFun <- cfg$transformations
types <- cfg$type
lower <- cfg$lower
upper <- cfg$upper
res <- funKerasMnist(x, kerasConf = kerasConf)
expect_equal(length(res), 7)
})
test_that("test funKerasTransferLearningDummy", {
set.seed(1)
kerasConf <- getKerasConf()
kerasConf$verbose <- 0
kerasConf$resDummy <- TRUE
lower <- c(1e-6, 1e-6, 1, 0.6, 0.99, 1e-9, 1)
x <- matrix(lower, 1,)
res <- funKerasTransferLearning(x, kerasConf = kerasConf)
expect_equal(length(res), 7)
})
test_that("check logging keras", {
library("SPOT")
set.seed(1)
kerasConf <- getKerasConf()
kerasConf$verbose <- 0
kerasConf$resDummy <- TRUE
cfg <- getModelConf(list(model="dl"))
x <- matrix(cfg$default, nrow=1)
transformFun <- cfg$transformations
types <- cfg$type
lower <- cfg$lower
upper <- cfg$upper
res <- spot(x=NULL,
funKerasMnist,
lower = lower,
upper = upper,
control=list(funEvals=15,
noise = TRUE,
# optimizer=optimDE,
optimizer = optimLHD,
plots = FALSE,
progress = TRUE,
noise = TRUE,
seedSPOT = 1,
model = buildRandomForest,
verbosity = 0
),
kerasConf=kerasConf
)
expect_equal(nrow(res$y), nrow(res$logInfo))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.