Nothing
# Daubechies Wavelet 1 and some general functions to be used for Daubechies, the basis of wavelet is formulated by the method of Meyer (S.2 in the paper)
# However, we also try the S.1 for estimating coefficients and choose the J_0 = 0.
#library(ggplot2)
# find the minimal value correspond, inter is the interval created, valtable is the db2 value table which is generated in advance.upper is the upper bound of basis. val express the input x.
w_find = function(valtable, inter, upper, val){
if(val < 0 | val >= upper){
return(0)
} else{
return(valtable[which(abs(inter-val) == min(abs(inter-val)))])
}
}
db1_f = function(t){
return(ifelse(t<1 & t>=0, 1,0))
}
dbplot = function(w, ops, title){ # c indicate the order of db and w indicate the number of basis(the true basis is 2^w).
if(ops == "db1"){
point = 10000
dbt = valdb(w,psi.f = 0, 1, point)
n = dim(dbt)[1]
x = seq(0, 1, length=n)
df = data.frame()
for (i in 2:(2^w + 1)){
res = as.data.frame(dbt[, i]) #unlist(poly_val(coeffi, i))
df = rbind(df, res)
}
f.df = df
colnames(f.df) = "new"
f.df$x = rep(x, 2^w)
f.df$order = as.factor(rep(1:(2^w), each = n))
theme_update(plot.title = element_text(hjust = 0.5))
p1 = ggplot(f.df, aes(x=x, y=new, group=order, colour = order))+ geom_line() + ggtitle(title) +
xlab("") + ylab("") + scale_colour_discrete(name ="order")+theme(plot.title = element_text(size=18, face="bold"),
legend.text=element_text(size=24, face = "bold"),
axis.text.x = element_text(face="bold", color="#993333", size=22, angle=0),
axis.text.y = element_text(face="bold", color="#993333",size=22, angle=0),
axis.title.x=element_text(size=22,face='bold'),
axis.title.y=element_text(angle=90, face='bold', size=22),
legend.title = element_text(face = "bold"))
return(p1)
} else{
#library(stringr)
filename = paste(ops,"_fa_table", sep = "")
aux_str = str_split(ops, "")[[1]]
if(aux_str[1] == "d"){
if(length(aux_str) == 3){
c = as.numeric(aux_str[3])
}else
{
c = as.numeric(paste(aux_str[3], aux_str[length(aux_str)], sep = ""))
}
} else{
c = as.numeric(aux_str[3])*3
}
#library(RCurl)
x <- getURL(paste("https://raw.githubusercontent.com/xcding1212/Sie2nts/main/db_table/", filename, sep = ""))
dbt = read.csv(text = x)
dbt = dbt[,2]
df = data.frame()
t=seq(0, 2*c - 1, length.out = length(dbt))
n = length(t)
x =seq(0,1, length.out = n)
for(h in 0:(2^w-1)){
p=rep(0, n)
for (k in 1:n){
for (l in -70:70){
p[k]=p[k]+ w_find(dbt, t, 2*c - 1, (2^(w)*(x[k]+l)-h))
}
p[k]=2^(w/2)*p[k]
}
df=rbind(df, data.frame(value = p))
p=rep(0, n)
}
df$x = rep(x, dim(df)[2])
df$class = as.factor(rep(1:(2^w), each = n))
theme_update(plot.title = element_text(hjust = 0.5))
p1 = ggplot(df, aes(x=x, y=value, group=class, colour = class))+ geom_line() + ggtitle(title) +
xlab("") + ylab("") + scale_colour_discrete(name ="order")+theme(plot.title = element_text(size=18, face="bold"),
legend.text=element_text(size=24, face = "bold"),
axis.text.x = element_text(face="bold", color="#993333", size=22, angle=0),
axis.text.y = element_text(face="bold", color="#993333",size=22, angle=0),
axis.title.x=element_text(size=22,face='bold'),
axis.title.y=element_text(angle=90, face='bold', size=22),
legend.title = element_text(face = "bold"))
return(p1)
}
}
wavelet_kth_b = function(k, ops){ # the k-th basis in 2^k total basis
w = k
if(ops == "db1"){
point = 10000
dbt = valdb(w,psi.f = 0, 1, point)
n = dim(dbt)[1]
x = seq(0, 1, length=n)
df = data.frame(x)
for (i in 2:(2^w + 1)){
res = as.data.frame(dbt[, i]) #unlist(poly_val(coeffi, i))
df = cbind(df, res)
}
df = data.frame(basis_value = df[,k+1])
return(df)
} else{
#library(stringr)
filename = paste(ops,"_fa_table", sep = "")
aux_str = str_split(ops, "")[[1]]
if(aux_str[1] == "d"){
if(length(aux_str) == 3){
c = as.numeric(aux_str[3])
}else
{
c = as.numeric(paste(aux_str[3], aux_str[length(aux_str)], sep = ""))
}
} else{
c = as.numeric(aux_str[3])*3
}
#library(RCurl)
x <- getURL(paste("https://raw.githubusercontent.com/xcding1212/Sie2nts/main/db_table/", filename, sep = ""))
dbt = read.csv(text = x)
dbt = dbt[,2]
t=seq(0, 2*c - 1, length.out = length(dbt))
n = length(t)
x =seq(0,1, length.out = n)
df = data.frame(x)
for(h in 0:(2^w-1)){
p=rep(0, n)
for (k in 1:n){
for (l in -70:70){
p[k]=p[k]+ w_find(dbt, t, 2*c - 1, (2^(w)*(x[k]+l)-h))
}
p[k]=2^(w/2)*p[k]
}
df=cbind(df, data.frame(value = p))
p=rep(0, n)
}
# db.leng = seq(0,1, length.out = point)
df = data.frame(basis_value = df[,w+1])
return(df)
}
}
# This basis is formulated by Meyer for Daubechies1
valdb1 = function(w, n){
x =seq(0,1, length.out = n)
df.db1 = data.frame(x = x)
for(h in 0:(2^w-1)){
p=rep(0, n);
for (k in 1:n){
for (l in 0:70){
p[k]=p[k]+ db1_f((2^(w)*(x[k]+l)-h))
}
p[k]=2^(w/2)*p[k]
}
df.db1[,h+2] = p
}
return(df.db1)
}
# get the res with different w.
# db_number represent which order of Daubechies to be used. 1-20 right now could be chosen. w indicates the number of basis functions.
valdb = function(w, psi.f=0, db_number, len.n){ # len.n indicates the point chosen
if(db_number == 1){
return(valdb1(w, len.n))
} else{
n = length(psi.f)
x =seq(0,1, length.out = n)
df.db = data.frame(x)
t=seq(0, 2*db_number - 1, length.out = n)
for(k in 0:(2^w-1)){
p=rep(0, n);
for (ind in 1:n){
for (l in 0:70){
p[ind]=p[ind]+ w_find(psi.f, t, 2*db_number - 1, (2^(w)*(x[ind]+l)-k))
}
p[ind]=(2^(w/2))*p[ind]
}
df.db[,k+2] = p
}
return(df.db)
}
}
phi_db = function(bspline, beta, b){
c = length(bspline)
b_res = list()
for(i in 0:b){
B.aux = matrix(c(rep(0, c*i), bspline, rep(0, c*(b-i))), ncol = 1)
b_res[[i+1]] = as.numeric(t(beta)%*%B.aux)
}
return(b_res)
}
# For resolving the issue system is computationally singular, we need to put options tol in the function solve(). One issue, why the last one coefficient inflated.
simu_db = function(ts, df.db, b, m = 500){
l.alpha = list()
aux.alpha = c()
n <- length(ts)
x <- seq(0, 1, length=n)
Base = df.db[which(abs(df.db$x - x[1]) == min(abs(df.db$x - x[1]))), -1]
for(i in 2:length(x)){
Base = rbind(Base, df.db[which(abs(df.db$x - x[i]) == min(abs(df.db$x - x[i]))), -1])
}
B = as.matrix(Base)
aux_B = B[(b+1):n,]
ind = b
aux.Y = matrix(rep(ts[ind:(n-b+ind-1)], dim(aux_B)[2]), ncol = dim(aux_B)[2])
Y = cbind(aux_B, aux_B*aux.Y)
ind = ind - 1
while(ind >= 1){
aux.Y = matrix(rep(ts[ind:(n-b+ind-1)], dim(aux_B)[2]), ncol = dim(aux_B)[2])
Y = cbind(Y, aux_B*aux.Y)
ind = ind - 1
}
X = matrix(ts[(b+1):n], ncol = 1)
beta = solve(t(Y)%*%Y, tol = 1e-20)%*%t(Y)%*%X
x <- seq(0, 1, length = m)
Base = df.db[which(abs(df.db$x - x[1]) == min(abs(df.db$x - x[1]))), -1]
for(i in 2:length(x)){
Base = rbind(Base, df.db[which(abs(df.db$x - x[i]) == min(abs(df.db$x - x[i]))), -1])
}
B = as.matrix(Base)
for(j in 1:(b+1)){
for(i in 1:m){
bspline = B[i,]
aux.alpha[i] = phi_db(bspline, beta, b)[[j]]
}
l.alpha[[j]] = aux.alpha
aux.alpha = c()
}
return(list(l.alpha, beta, Y))
}
db.loocv = function(ts, df.db, b){
c = dim(df.db)[2] - 1
n = length(ts)
aux.true = ts[(b+1):n]
aux.esti = c()
leve.i = c()
beta.es = simu_db(ts, df.db, b, n)
hat = beta.es[[3]]%*%solve(t(beta.es[[3]])%*%beta.es[[3]])%*%t(beta.es[[3]])
for(i in (b+1):n){
aux.esti[i-b] = matrix(beta.es[[3]][i-b,], nrow = 1)%*%beta.es[[2]]
leve.i[i-b] = as.numeric(hat[i-b,i-b]) # hii is the diagonal of the hat matrix
}
error = (aux.true - aux.esti)^2
lever = sum(error/((1-leve.i)^2))/(n-b)
return(c(log(c,2),b,lever))
}
db.cv = function(ts, c, b, ops){
n = length(ts)
l = floor(3*log2(n))
aux.train = ts[1:(n-l)]
aux.vali = ts[(n-l+1):n]
tt = fix.fit.wavelet(aux.train, c, b, length(aux.train), ops)
pre = predict.wavelet(aux.train, tt, length(aux.vali))
error = sum((aux.vali - pre)^2)/l
return(c(c,b,error))
}
# estimate contains the coefficients, beta and the design matrix.
# prediction
predict.wavelet = function(ts, esti.li, k){ # k indicates the number of predictions
ts.pre = c()
phi.h = esti.li[[2]]
n = length(ts)
b = length(phi.h)
for(h in 1:k){
aux.pre = phi.h[[1]][n]
for(j in 2:b){
aux.pre = aux.pre + phi.h[[j]][n]*ts[n-h-j]
}
ts.pre[h] = aux.pre
}
return(ts.pre)
}
fix.fit.wavelet = function(ts, k, b, m = 500, ops){ # this k indicates that the number of basis is 2^k
if(ops == "db1"){
basis_db1 = valdb(k, psi.f=0, db_number=1,len.n=10000)
ols = simu_db(ts, basis_db1, b, m)[[2]]
aux.ts = simu_db(ts, basis_db1, b, m)[[1]]
error.s = c()
n = length(ts)
es.alpha = simu_db(ts, basis_db1, b, n)[[1]]
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*ts[i-j+1]
}
error.s[i-b] = ts[i] - val.aux
}
return(list(ols.coef = ols, ts.coef = aux.ts, Residuals = error.s))
} else{
#library(stringr)
filename = paste(ops,"_fa_table", sep = "")
aux_str = str_split(ops, "")[[1]]
if(aux_str[1] == "d"){
if(length(aux_str) == 3){
c = as.numeric(aux_str[3])
}else
{
c = as.numeric(paste(aux_str[3], aux_str[length(aux_str)], sep = ""))
}
} else{
c = as.numeric(aux_str[3])*3
}
#library(RCurl)
x <- getURL(paste("https://raw.githubusercontent.com/xcding1212/Sie2nts/main/db_table/", filename, sep = ""))
dbt = read.csv(text = x)
dbt = dbt[,2]
db.basis = valdb(k, dbt, db_number = c, len.n = 0)
ols = simu_db(ts, db.basis, b, m)[[2]] # first k indicates the k of 2^k number of basis, second c indicates db number, b indicates b.
ts.c = simu_db(ts, db.basis, b, m)[[1]]
error.s = c()
n = length(ts)
es.alpha = simu_db(ts, db.basis, b, n)[[1]]
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*ts[i-j+1]
}
error.s[i-b] = ts[i] - val.aux
}
return(list(ols.coef = ols, ts.coef = ts.c, Residuals = error.s))
}
}
auto.fit.wavelet = function(ts, c=3, b = 2, m=500, ops, method = "CV", threshold = 0){ # c indicates 2^c number of basis function
res.bc = matrix(ncol = 3, nrow = c*b)
ind = 1
for(i in 1:c){
for(j in 1:b){
if(method == "CV"){
res.bc[ind, ] = db.cv(ts, i, j, ops)
} else{
if(ops == "db1"){
res.bc[ind, ] = db.loocv(ts, valdb(i, psi.f=0, db_number=1,len.n=10000), j)
}else{
#library(stringr)
filename = paste(ops,"_fa_table", sep = "")
aux_str = str_split(ops, "")[[1]]
if(aux_str[1] == "d"){
if(length(aux_str) == 3){
c = as.numeric(aux_str[3])
}else
{
c = as.numeric(paste(aux_str[3], aux_str[length(aux_str)], sep = ""))
}
} else{
c = as.numeric(aux_str[3])*3
}
#library(RCurl)
x <- getURL(paste("https://raw.githubusercontent.com/xcding1212/Sie2nts/main/db_table/", filename, sep = ""))
dbt = read.csv(text = x)
dbt = dbt[,2]
res.bc[ind, ] = db.loocv(ts, valdb(i, dbt, db_number = c, len.n = 0), j)
}
}
ind = ind + 1
}
}
colnames(res.bc) = c("c", "b", "cv")
if(method == "Elbow"){
b.s = res.bc[which(res.bc[,3] == min(res.bc[, 3])),2]
res.bc = res.bc[which(res.bc[,2] == b.s), ]
if(threshold == 0){
c.s = 1 + which(abs(res.bc[1:(length(res.bc[,3])-1),3]/res.bc[-1,3] - 1) == max(abs(res.bc[1:(length(res.bc[,3])-1),3]/res.bc[-1,3] - 1)))
} else{
c.s = max(which(abs(res.bc[1:(length(res.bc[,3])-1),3]/res.bc[-1,3] - 1) >= threshold)) + 1
}
estimate = fix.fit.wavelet(ts, c.s, b.s, m, ops)
}else{
b.s = res.bc[which(res.bc[,3] == min(res.bc[, 3])),2]
c.s = res.bc[which(res.bc[,3] == min(res.bc[, 3])),1]
estimate = fix.fit.wavelet(ts, c.s, b.s, m, ops)
}
return(list(Estimate = estimate[[2]], CV = res.bc, Coefficients = estimate[[1]], BC = c(c.s, b.s)))
}
db_basis.f = function(b.table, x){
return(as.numeric(b.table[which(abs(b.table[,1]-x) == min(abs(b.table[,1]-x)))[1], -1]))
}
# Testing
mv_method.wav = function(timese, db.basis, k, b, ops){ # c means c+2 basis line
#library(splines)
h.0 = 3
m.li = c(1:25)
#library(Matrix)
# Design matrix
Y = simu_db(timese, db.basis, b, 10000)[[3]]
n = length(timese)
# li.res = list()
# m = 6
# Error, i = b* + 1... n
error.s = c()
es.alpha = fix.fit.wavelet(timese, k, b, n, ops)[[2]]
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*timese[i-j+1]
}
error.s[i-b] = timese[i] - val.aux
}
Phi.li = list()
for (m in m.li){
aux_Phi=0
Phi = 0
for(i in (b+1):(n-m)){
h = 0
for(j in i:(i+m)){
aux.h = matrix(rev(c(timese[(j- b):(j - 1)],1)), ncol = 1)*error.s[j-b]
h = h + aux.h
}
B = matrix(db_basis.f(db.basis, i/n), ncol = 1)
Phi = Phi + kronecker(h, B)
aux_Phi = aux_Phi + Phi%*%t(Phi)
}
Phi.li[[m]] = 1/((n-m-b+1)*m)*aux_Phi
}
se.li = list()
for(mj in (min(m.li)+h.0):(max(m.li)-h.0)){
av.Phi = 0
se = 0
for (k in -3:3){
av.Phi = av.Phi + Phi.li[[mj + k]]
}
av.Phi = av.Phi/7
for(k in -3:3){
se = se + norm(av.Phi - Phi.li[[mj + k]], "2")^2
}
se.li[[mj-3]] = sqrt(se/6)
}
return(m.op = which(unlist(se.li) == min(unlist(se.li))) + 3)
# return(unlist(se.li))
}
fix.test.wavelet = function(timese, k, b, ops, B.s, m){
#library(Matrix)
# Design matrix
if(ops == "db1"){
db.basis = valdb(k, psi.f=0, db_number=1,len.n=10000)
}else{
#library(stringr)
filename = paste(ops,"_fa_table", sep = "")
aux_str = str_split(ops, "")[[1]]
if(aux_str[1] == "d"){
if(length(aux_str) == 3){
c = as.numeric(aux_str[3])
}else
{
c = as.numeric(paste(aux_str[3], aux_str[length(aux_str)], sep = ""))
}
} else{
c = as.numeric(aux_str[3])*3
}
#library(RCurl)
x <- getURL(paste("https://raw.githubusercontent.com/xcding1212/Sie2nts/main/db_table/", filename, sep = ""))
dbt = read.csv(text = x)
dbt = dbt[,2]
db.basis = valdb(k, dbt, db_number = c, len.n = 0)
}
c = dim(db.basis)[2] - 1
Y = simu_db(timese, db.basis, b, 10000)[[3]]
n = length(timese)
# li.res = list()
if(m == 0){
m = mv_method.wav(timese, db.basis, k, b, ops) #floor(n^(1/3))
}
# m = 6
esti = simu_db(timese, db.basis, b, 10000)[[1]] # the estimate of coefficients
# Error, i = b* + 1... n
error.s = c()
es.alpha = simu_db(timese, db.basis, b, n)[[1]]
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*timese[i-j+1]
}
error.s[i-b] = timese[i] - val.aux
}
# B
inte = db_basis.f(db.basis, 1/10000)*(1/10000)
for(i in 2:10000){
inte = inte + db_basis.f(db.basis, i/10000)*(1/10000)
}
r.c = c # 2*(c-1)+1 only for tri basis.
# I.bc
I = matrix(rep(0, ((b+1)*r.c)^2), ncol = (b+1)*r.c)
for(ind in 0:(b*r.c-1)){
I[dim(I)[1] - ind, dim(I)[2] -ind] = 1
}
nT = 0
for (i in 2:length(esti)){
nT = nT + sum(((esti[[i]] - sum(esti[[i]]/10000))^2)/10000)
}
nT = n*nT
Sigma = n*solve(t(Y)%*%Y)
inte = matrix(inte, ncol =1)
W = diag(r.c) - inte%*%t(inte)
W = matrix(bdiag(replicate(b+1,W,simplify=FALSE)), ncol = (b+1)*r.c)
Tao = Sigma%*%I%*%W%*%Sigma
# hist(unlist(Sta))
# print(ite)
Sta = list()
Phi.li = list()
for(k in 1:B.s){
R = rnorm(n-m-b, 0, 1)
Phi = 0
for(i in (b+1):(n-m)){
h = 0
for(j in i:(i+m)){
aux.h = matrix(rev(c(timese[(j- b):(j - 1)],1)), ncol = 1)*error.s[j-b]
h = h + aux.h
}
B = matrix(db_basis.f(db.basis, i/n), ncol = 1)
Phi = Phi + kronecker(h, B)*R[i-b]
}
Phi = (1/sqrt((n-m-b+1)*m))*Phi
Phi.li[[k]] = Phi
}
# image(W)
# W[(c+1):dim(W)[1], (c+1):dim(W)[2]] = 0
for(k in 1:B.s){
Sta[[k]] = t(Phi.li[[k]])%*%Tao%*%Phi.li[[k]]
}
# nT > sort(unlist(Sta))[950] if TRUE reject the null
return(1 - sum(unlist(Sta) <= nT)/B.s)
}
# testing b function(timese, k, b, ops)
fit.testing.b.wavelet = function(timese, k, b.0 = 3, ops, b = 8, B.s, m){
if(b.0 >= b){return(FALSE)}
#library(Matrix)
if(ops == "db1"){
db.basis = valdb(k, psi.f=0, db_number=1,len.n=10000)
}else{
#library(stringr)
filename = paste(ops,"_fa_table", sep = "")
aux_str = str_split(ops, "")[[1]]
if(aux_str[1] == "d"){
if(length(aux_str) == 3){
c = as.numeric(aux_str[3])
}else
{
c = as.numeric(paste(aux_str[3], aux_str[length(aux_str)], sep = ""))
}
} else{
c = as.numeric(aux_str[3])*3
}
#library(RCurl)
x <- getURL(paste("https://raw.githubusercontent.com/xcding1212/Sie2nts/main/db_table/", filename, sep = ""))
dbt = read.csv(text = x)
dbt = dbt[,2]
db.basis = valdb(k, dbt, db_number = c, len.n = 0)
}
c = dim(db.basis)[2] - 1
Y = simu_db(timese, db.basis, b, 10000)[[3]]
n = length(timese)
# li.res = list()
if(m == 0){
m = mv_method.wav(timese, db.basis, k, b, ops) #floor(n^(1/3))
}
# m = 6
esti = simu_db(timese, db.basis, b, 10000)[[1]] # the estimate of coefficients
# Error, i = b* + 1... n
error.s = c()
es.alpha = simu_db(timese, db.basis, b, n)[[1]]
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*timese[i-j+1]
}
error.s[i-b] = timese[i] - val.aux
}
r.c = c # 2*(c-1)+1 only for tri basis.
aux.pval = list()
# B
for(k.aux in 0:(b.0-1)){ # 0 ---> 1-15
# 1 ---> 2-15
nT = 0
for (i in (2+k.aux):length(esti)){
nT = nT + sum((esti[[i]]^2)/10000)
}
nT = n*nT
# I.bc
I = matrix(rep(0, ((b+1)*r.c)^2), ncol = (b+1)*r.c)
for(ind in 0:((b-k.aux)*r.c-1)){
I[dim(I)[1] - ind, dim(I)[2] -ind] = 1
}
Sigma = n*solve(t(Y)%*%Y)
Tao = Sigma%*%I%*%Sigma
Sta = list()
Phi.li = list()
for(k in 1:B.s){
R = rnorm(n-m-b, 0, 1)
Phi = 0
for(i in (b+1):(n-m)){
h = 0
for(j in i:(i+m)){
aux.h = matrix(rev(c(timese[(j- b):(j - 1)],1)), ncol = 1)*error.s[j-b]
h = h + aux.h
}
B = matrix(db_basis.f(db.basis, i/n), ncol = 1)
Phi = Phi + kronecker(h, B)*R[i-b]
}
Phi = (1/sqrt((n-m-b+1)*m))*Phi
Phi.li[[k]] = Phi
}
for(k.aux2 in 1:B.s){
Sta[[k.aux2]] = t(Phi.li[[k.aux2]])%*%Tao%*%Phi.li[[k.aux2]]
}
aux.pval[[k.aux+1]] = 1 - sum(unlist(Sta) <= nT)/B.s
}
# nT > sort(unlist(Sta))[950] if TRUE reject the null
return(aux.pval)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.