RunSVD | R Documentation |
Run partial singular value decomposition using irlba
RunSVD(object, ...)
## Default S3 method:
RunSVD(
object,
assay = NULL,
n = 50,
scale.embeddings = TRUE,
reduction.key = "LSI_",
scale.max = NULL,
verbose = TRUE,
irlba.work = n * 3,
tol = 1e-05,
...
)
## S3 method for class 'Assay'
RunSVD(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.key = "LSI_",
scale.max = NULL,
verbose = TRUE,
...
)
## S3 method for class 'StdAssay'
RunSVD(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.key = "LSI_",
scale.max = NULL,
verbose = TRUE,
...
)
## S3 method for class 'Seurat'
RunSVD(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.key = "LSI_",
reduction.name = "lsi",
scale.max = NULL,
verbose = TRUE,
...
)
object |
A Seurat object |
... |
Arguments passed to other methods |
assay |
Which assay to use. If NULL, use the default assay |
n |
Number of singular values to compute |
scale.embeddings |
Scale cell embeddings within each component to mean 0 and SD 1 (default TRUE). |
reduction.key |
Key for dimension reduction object |
scale.max |
Clipping value for cell embeddings. Default (NULL) is no clipping. |
verbose |
Print messages |
irlba.work |
work parameter for |
tol |
Tolerance (tol) parameter for |
features |
Which features to use. If NULL, use variable features |
reduction.name |
Name for stored dimension reduction object. Default 'svd' |
Returns a Seurat
object
x <- matrix(data = rnorm(100), ncol = 10)
RunSVD(x)
## Not run:
RunSVD(atac_small[['peaks']])
## End(Not run)
## Not run:
RunSVD(atac_small[['peaks']])
## End(Not run)
## Not run:
RunSVD(atac_small)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.