R/SuperLearner.R

Defines functions SuperLearner

Documented in SuperLearner

 #  SuperLearner
#
#  Created by Eric Polley on 2011-01-01.
#
SuperLearner <- function(Y, X, newX = NULL, family = gaussian(), SL.library,
                         method = 'method.NNLS', id = NULL, verbose = FALSE, control = list(),
                         cvControl = list(), obsWeights = NULL, env = parent.frame()) {

    # Begin timing how long SuperLearner takes to execute.
    time_start = proc.time()

    if (is.character(method)) {
        if (exists(method, mode = 'list')) {
            method <- get(method, mode = 'list')
        } else if (exists(method, mode = 'function')) {
            method <- get(method, mode = 'function')()
        }
    } else if (is.function(method)) {
        method <- method()
    }
    if(!is.list(method)) {
        stop("method is not in the appropriate format. Check out help('method.template')")
    }
    if(!is.null(method$require)) {
        sapply(method$require, function(x) require(force(x), character.only = TRUE))
    }
    # get defaults for controls and make sure in correct format
    control <- do.call('SuperLearner.control', control)
    cvControl <- do.call('SuperLearner.CV.control', cvControl)

    # put together the library
    # should this be in a new environment?
    library <- .createLibrary(SL.library)
    .check.SL.library(library = c(unique(library$library$predAlgorithm), library$screenAlgorithm))

    call <- match.call(expand.dots = TRUE)
    # should we be checking X and newX for data.frame?
    # data.frame not required, but most of the built-in wrappers assume a data.frame
    if(!inherits(X, 'data.frame')) message('X is not a data frame. Check the algorithms in SL.library to make sure they are compatible with non data.frame inputs')
    varNames <- colnames(X)
    N <- dim(X)[1L]
    p <- dim(X)[2L]
    k <- nrow(library$library)
    kScreen <- length(library$screenAlgorithm)
    Z <- matrix(NA, N, k)
    libraryNames <- paste(library$library$predAlgorithm, library$screenAlgorithm[library$library$rowScreen], sep="_")

    if(p < 2 & !identical(library$screenAlgorithm, "All")) {
        warning('Screening algorithms specified in combination with single-column X.')
    }

    # put fitLibrary in it's own environment to locate later
    fitLibEnv <- new.env()
    assign('fitLibrary', vector('list', length = k), envir = fitLibEnv)
    assign('libraryNames', libraryNames, envir = fitLibEnv)
    evalq(names(fitLibrary) <- libraryNames, envir = fitLibEnv)

    # errors* records if an algorithm stops either in the CV step and/or in full data
    errorsInCVLibrary <- rep(0, k)
    errorsInLibrary <- rep(0, k)

    # if newX is missing, use X
    if(is.null(newX)) {
        newX <- X
    }
    # Are these checks still required?
    if(!identical(colnames(X), colnames(newX))) {
        stop("The variable names and order in newX must be identical to the variable names and order in X")
    }
    if (sum(is.na(X)) > 0 | sum(is.na(newX)) > 0 | sum(is.na(Y)) > 0) {
        stop("missing data is currently not supported. Check Y, X, and newX for missing values")
    }
    if (!is.numeric(Y)) {
        stop("the outcome Y must be a numeric vector")
    }
    # family can be either character or function, so these lines put everything together (code from glm())
    if(is.character(family))
        family <- get(family, mode="function", envir=parent.frame())
    if(is.function(family))
        family <- family()
    if (is.null(family$family)) {
        print(family)
        stop("'family' not recognized")
    }

    if (family$family != "binomial" & isTRUE("cvAUC" %in% method$require)){
        stop("'method.AUC' is designed for the 'binomial' family only")
    }

    # create CV folds
    validRows <- CVFolds(N = N, id = id, Y = Y, cvControl = cvControl)

    # test id
    if(is.null(id)) {
        id <- seq(N)
    }
    if(!identical(length(id), N)) {
        stop("id vector must have the same dimension as Y")
    }
    # test observation weights
    if(is.null(obsWeights)) {
        obsWeights <- rep(1, N)
    }
    if(!identical(length(obsWeights), N)) {
        stop("obsWeights vector must have the same dimension as Y")
    }

    # create function for the cross-validation step:
    .crossValFUN <- function(valid, Y, dataX, id, obsWeights, library, 
                             kScreen, k, p, libraryNames, saveCVFitLibrary) {
        tempLearn <- dataX[-valid, , drop = FALSE]
        tempOutcome <- Y[-valid]
        tempValid <- dataX[valid, , drop = FALSE]
        tempWhichScreen <- matrix(NA, nrow = kScreen, ncol = p)
        tempId <- id[-valid]
        tempObsWeights <- obsWeights[-valid]

        # should this be converted to a lapply also?
        for(s in seq(kScreen)) {
            screen_fn = get(library$screenAlgorithm[s], envir = env)
            testScreen <- try(do.call(screen_fn, list(Y = tempOutcome, X = tempLearn, family = family, id = tempId, obsWeights = tempObsWeights)))
            if(inherits(testScreen, "try-error")) {
                warning(paste("replacing failed screening algorithm,", library$screenAlgorithm[s], ", with All()", "\n "))
                tempWhichScreen[s, ] <- TRUE
            } else {
                tempWhichScreen[s, ] <- testScreen
            }
            if(verbose) {
                message(paste("Number of covariates in ", library$screenAlgorithm[s], " is: ", sum(tempWhichScreen[s, ]), sep = ""))
            }
        } #end screen

        # should this be converted to a lapply also?
        out <- matrix(NA, nrow = nrow(tempValid), ncol = k)
        if(saveCVFitLibrary){
            model_out <- vector(mode = "list", length = k)
        }else{
            model_out <- NULL
        }

        for(s in seq(k)) {
            pred_fn = get(library$library$predAlgorithm[s], envir = env)
            testAlg <- try(do.call(pred_fn, list(Y = tempOutcome, X = subset(tempLearn, select = tempWhichScreen[library$library$rowScreen[s], ], drop=FALSE), newX = subset(tempValid, select = tempWhichScreen[library$library$rowScreen[s], ], drop=FALSE), family = family, id = tempId, obsWeights = tempObsWeights)))
            if(inherits(testAlg, "try-error")) {
                warning(paste("Error in algorithm", library$library$predAlgorithm[s], "\n  The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
            # errorsInCVLibrary[s] <<- 1
            } else {
                out[, s] <- testAlg$pred
                if(saveCVFitLibrary){
                    model_out[[s]] <- testAlg$fit
                }
            }
            if (verbose) message(paste("CV", libraryNames[s]))
        } #end library
        if(saveCVFitLibrary){
            names(model_out) <- libraryNames
        }
        invisible(list(out = out, model_out = model_out))
    }
    # the lapply performs the cross-validation steps to create Z
    # additional steps to put things in the correct order
    # rbind unlists the output from lapply
    # need to unlist folds to put the rows back in the correct order
    time_train_start = proc.time()

    crossValFUN_out <- lapply(validRows, FUN = .crossValFUN, 
                              Y = Y, dataX = X, id = id, 
                              obsWeights = obsWeights, 
                              library = library, kScreen = kScreen, 
                              k = k, p = p, libraryNames = libraryNames,
                              saveCVFitLibrary = control$saveCVFitLibrary)
    Z[unlist(validRows, use.names = FALSE), ] <- do.call('rbind', lapply(crossValFUN_out, "[[", "out"))
    if(control$saveCVFitLibrary){
        cvFitLibrary <- lapply(crossValFUN_out, "[[", "model_out")
    }else{
        cvFitLibrary <- NULL
    }
    # Check for errors. If any algorithms had errors, replace entire column with
    # 0 even if error is only in one fold.
    errorsInCVLibrary <- apply(Z, 2, function(x) anyNA(x))
    if (sum(errorsInCVLibrary) > 0) {
        Z[, as.logical(errorsInCVLibrary)] <- 0
    }
    if (all(Z == 0)) {
        stop("All algorithms dropped from library")
    }

    # Compute weights for each algorithm in library.
    getCoef <- method$computeCoef(Z = Z, Y = Y, libraryNames = libraryNames,
                                  obsWeights = obsWeights, control = control,
                                  verbose = verbose,
                                  errorsInLibrary = errorsInCVLibrary)
    coef <- getCoef$coef
    names(coef) <- libraryNames

    time_train = proc.time() - time_train_start

    # Set a default in case the method does not return the optimizer result.
    if (!("optimizer" %in% names(getCoef))) {
        getCoef["optimizer"] <- NA
    }

    # now fit all algorithms in library on entire learning data set and predict on newX
    m <- dim(newX)[1L]
    predY <- matrix(NA, nrow = m, ncol = k)
    # whichScreen <- matrix(NA, nrow = kScreen, ncol = p)

    .screenFun <- function(fun, list) {
        screen_fn = get(fun, envir = env)
        testScreen <- try(do.call(screen_fn, list))
        if (inherits(testScreen, "try-error")) {
            warning(paste("replacing failed screening algorithm,", fun, ", with All() in full data", "\n "))
            out <- rep(TRUE, ncol(list$X))
        } else {
            out <- testScreen
        }
        return(out)
    }

    time_predict_start = proc.time()

    whichScreen <- sapply(library$screenAlgorithm, FUN = .screenFun, list = list(Y = Y, X = X, family = family, id = id, obsWeights = obsWeights), simplify = FALSE)
    whichScreen <- do.call(rbind, whichScreen)

    # change to sapply?
    # for(s in 1:k) {
    #   testAlg <- try(do.call(library$library$predAlgorithm[s], list(Y = Y, X = subset(X, select = whichScreen[library$library$rowScreen[s], ], drop=FALSE), newX = subset(newX, select = whichScreen[library$library$rowScreen[s], ], drop=FALSE), family = family, id = id, obsWeights = obsWeights)))
    #   if(inherits(testAlg, "try-error")) {
    #     warning(paste("Error in algorithm", library$library$predAlgorithm[s], " on full data", "\n  The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
    #     errorsInLibrary[s] <- 1
    #   } else {
    #     predY[, s] <- testAlg$pred
    #   }
    #   if(control$saveFitLibrary) {
    #     fitLibrary[[s]] <- testAlg$fit
    #   }
    #   if(verbose) {
    #     message(paste("full", libraryNames[s]))
    #   }
    # }
    .predFun <- function(index, lib, Y, dataX, newX, whichScreen, family, id, obsWeights, verbose, control, libraryNames) {
        pred_fn = get(lib$predAlgorithm[index], envir = env)
        testAlg <- try(do.call(pred_fn, list(Y = Y,
                                             X = subset(dataX,
                                                        select = whichScreen[lib$rowScreen[index], ], drop=FALSE),
                                             newX = subset(newX, select = whichScreen[lib$rowScreen[index], ], drop=FALSE),
                                             family = family, id = id, obsWeights = obsWeights)))
        # testAlg <- try(do.call(lib$predAlgorithm[index], list(Y = Y, X = dataX[, whichScreen[lib$rowScreen[index], drop = FALSE]], newX = newX[, whichScreen[lib$rowScreen[index], drop = FALSE]], family = family, id = id, obsWeights = obsWeights)))
        if (inherits(testAlg, "try-error")) {
            warning(paste("Error in algorithm", lib$predAlgorithm[index], " on full data", "\n  The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
            out <- rep.int(NA, times = nrow(newX))
        } else {
            out <- testAlg$pred
            if (control$saveFitLibrary) {
                eval(bquote(fitLibrary[[.(index)]] <- .(testAlg$fit)), envir = fitLibEnv)
            }
        }
        if (verbose) {
            message(paste("full", libraryNames[index]))
        }
        invisible(out)
    }


    predY <- do.call('cbind', lapply(seq(k), FUN = .predFun,
                                     lib = library$library, Y = Y, dataX = X,
                                     newX = newX, whichScreen = whichScreen,
                                     family = family, id = id,
                                     obsWeights = obsWeights, verbose = verbose,
                                     control = control,
                                     libraryNames = libraryNames))

    # check for errors
    errorsInLibrary <- apply(predY, 2, function(algorithm) anyNA(algorithm))
    if (sum(errorsInLibrary) > 0) {
        if (sum(coef[as.logical(errorsInLibrary)]) > 0) {
            warning(paste0("Re-running estimation of coefficients removing failed algorithm(s)\n",
                           "Original coefficients are: \n", paste(coef, collapse = ", "), "\n"))
            Z[, as.logical(errorsInLibrary)] <- 0
            if (all(Z == 0)) {
                stop("All algorithms dropped from library")
            }
            getCoef <- method$computeCoef(Z = Z, Y = Y, libraryNames = libraryNames,
                                          obsWeights = obsWeights, control = control,
                                          verbose = verbose,
                                          errorsInLibrary = errorsInLibrary)
            coef <- getCoef$coef
            names(coef) <- libraryNames
        } else {
            warning("Coefficients already 0 for all failed algorithm(s)")
        }
    }

    # Compute super learner predictions on newX.
    getPred <- method$computePred(predY = predY, coef = coef, control = control)

    time_predict = proc.time() - time_predict_start

    # Add names of algorithms to the predictions.
    colnames(predY) <- libraryNames

    # Clean up when errors in library.
    if(sum(errorsInCVLibrary) > 0) {
        getCoef$cvRisk[as.logical(errorsInCVLibrary)] <- NA
    }

    # Finish timing the full SuperLearner execution.
    time_end = proc.time()

    # Compile execution times.
    times = list(everything = time_end - time_start,
                 train = time_train,
                 predict = time_predict)

    # Put everything together in a list.
    out <- list(
        call = call,
        libraryNames = libraryNames,
        SL.library = library,
        SL.predict = getPred,
        coef = coef,
        library.predict = predY,
        Z = Z,
        cvRisk = getCoef$cvRisk,
        family = family,
        fitLibrary = get('fitLibrary', envir = fitLibEnv),
        cvFitLibrary = cvFitLibrary,
        varNames = varNames,
        validRows = validRows,
        method = method,
        whichScreen = whichScreen,
        control = control,
        cvControl = cvControl,
        errorsInCVLibrary = errorsInCVLibrary,
        errorsInLibrary = errorsInLibrary,
        metaOptimizer = getCoef$optimizer,
        env = env,
        times = times
    )
    class(out) <- c("SuperLearner")
    return(out)
}

Try the SuperLearner package in your browser

Any scripts or data that you put into this service are public.

SuperLearner documentation built on May 29, 2024, 5:25 a.m.