Nothing
# snowSuperLearner
#
# Created by Eric Polley on 2011-04-19.
#
snowSuperLearner <- function(cluster, Y, X, newX = NULL, family = gaussian(), SL.library,
method = 'method.NNLS', id = NULL, verbose = FALSE,
control = list(), cvControl = list(), obsWeights = NULL,
env = parent.frame()) {
# Begin timing how long SuperLearner takes to execute.
time_start = proc.time()
.SL.require('parallel')
if (!inherits(cluster, 'cluster')) stop('\'cluster\' must be a cluster created using the makeCluster() function in the snow package')
if (is.character(method)) {
if (exists(method, mode = 'list')) {
method <- get(method, mode = 'list')
} else if (exists(method, mode = 'function')) {
method <- get(method, mode = 'function')()
}
} else if (is.function(method)) {
method <- method()
}
if(!is.list(method)) {
stop("method is not in the appropriate format. Check out help('method.template')")
}
if(!is.null(method$require)) {
sapply(method$require, function(x) require(force(x), character.only = TRUE))
}
# get defaults for controls and make sure in correct format
control <- do.call('SuperLearner.control', control)
cvControl <- do.call('SuperLearner.CV.control', cvControl)
# put together the library
# should this be in a new environment?
library <- .createLibrary(SL.library)
.check.SL.library(library = c(unique(library$library$predAlgorithm), library$screenAlgorithm))
call <- match.call(expand.dots = TRUE)
# should we be checking X and newX for data.frame?
# data.frame not required, but most of the built-in wrappers assume a data.frame
if(!inherits(X, 'data.frame')) message('X is not a data frame. Check the algorithms in SL.library to make sure they are compatible with non data.frame inputs')
varNames <- colnames(X)
N <- dim(X)[1L]
p <- dim(X)[2L]
k <- nrow(library$library)
kScreen <- length(library$screenAlgorithm)
Z <- matrix(NA, N, k)
libraryNames <- paste(library$library$predAlgorithm, library$screenAlgorithm[library$library$rowScreen], sep="_")
if(p < 2 & !identical(library$screenAlgorithm, "All")) {
warning('Screening algorithms specified in combination with single-column X.')
}
# put fitLibrary in it's own environment to locate later
fitLibEnv <- new.env()
assign('fitLibrary', vector('list', length = k), envir = fitLibEnv)
assign('libraryNames', libraryNames, envir = fitLibEnv)
evalq(names(fitLibrary) <- libraryNames, envir = fitLibEnv)
# errors* records if an algorithm stops either in the CV step and/or in full data
errorsInCVLibrary <- rep(0, k)
errorsInLibrary <- rep(0, k)
# if newX is missing, use X
if(is.null(newX)) {
newX <- X
}
# Are these checks still required?
if(!identical(colnames(X), colnames(newX))) {
stop("The variable names and order in newX must be identical to the variable names and order in X")
}
if (sum(is.na(X)) > 0 | sum(is.na(newX)) > 0 | sum(is.na(Y)) > 0) {
stop("missing data is currently not supported. Check Y, X, and newX for missing values")
}
if (!is.numeric(Y)) {
stop("the outcome Y must be a numeric vector")
}
# family can be either character or function, so these lines put everything together (code from glm())
if (is.character(family))
family <- get(family, mode="function", envir=env)
if (is.function(family))
family <- family()
if (is.null(family$family)) {
print(family)
stop("'family' not recognized")
}
if (family$family != "binomial" & isTRUE("cvAUC" %in% method$require)){
stop("'method.AUC' is designed for the 'binomial' family only")
}
# create CV folds
validRows <- CVFolds(N = N, id = id, Y = Y, cvControl = cvControl)
# test id
if(is.null(id)) {
id <- seq(N)
}
if(!identical(length(id), N)) {
stop("id vector must have the same dimension as Y")
}
# test observation weights
if(is.null(obsWeights)) {
obsWeights <- rep(1, N)
}
if(!identical(length(obsWeights), N)) {
stop("obsWeights vector must have the same dimension as Y")
}
# create function for the cross-validation step:
.crossValFUN <- function(valid, Y, dataX, id, obsWeights, library, kScreen, k, p, libraryNames, verbose) {
tempLearn <- dataX[-valid, , drop = FALSE]
tempOutcome <- Y[-valid]
tempValid <- dataX[valid, , drop = FALSE]
tempWhichScreen <- matrix(NA, nrow = kScreen, ncol = p)
tempId <- id[-valid]
tempObsWeights <- obsWeights[-valid]
# should this be converted to a lapply also?
for(s in seq(kScreen)) {
screen_fn = get(library$screenAlgorithm[s], envir = env)
testScreen <- try(do.call(screen_fn, list(Y = tempOutcome, X = tempLearn, family = family, id = tempId, obsWeights = tempObsWeights)))
if(inherits(testScreen, "try-error")) {
warning(paste("replacing failed screening algorithm,", library$screenAlgorithm[s], ", with All()", "\n "))
tempWhichScreen[s, ] <- TRUE
} else {
tempWhichScreen[s, ] <- testScreen
}
if(verbose) {
message(paste("Number of covariates in ", library$screenAlgorithm[s], " is: ", sum(tempWhichScreen[s, ]), sep = ""))
}
} #end screen
# should this be converted to a lapply also?
out <- matrix(NA, nrow = nrow(tempValid), ncol = k)
for(s in seq(k)) {
pred_fn = library$library$predAlgorithm[s]
testAlg <- try(do.call(pred_fn, list(Y = tempOutcome, X = subset(tempLearn, select = tempWhichScreen[library$library$rowScreen[s], ], drop=FALSE), newX = subset(tempValid, select = tempWhichScreen[library$library$rowScreen[s], ], drop=FALSE), family = family, id = tempId, obsWeights = tempObsWeights)))
if(inherits(testAlg, "try-error")) {
warning(paste("Error in algorithm", library$library$predAlgorithm[s], "\n The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
# errorsInCVLibrary[s] <<- 1
# '<<-' doesn't work with snow.
} else {
out[, s] <- testAlg$pred
}
# verbose will not work in the GUI, but works in the terminal (test this)
if(verbose) message(paste("CV", libraryNames[s]))
} #end library
invisible(out)
}
# the lapply performs the cross-validation steps to create Z
# additional steps to put things in the correct order
# rbind unlists the output from lapply
# need to unlist folds to put the rows back in the correct order
time_train = system.time({
Z[unlist(validRows, use.names = FALSE), ] <- do.call('rbind', parallel::parLapply(cl = cluster, X = validRows, fun = .crossValFUN, Y = Y, dataX = X, id = id, obsWeights = obsWeights, library = library, kScreen = kScreen, k = k, p = p, libraryNames = libraryNames, verbose = verbose))
# Check for errors. If any algorithms had errors, replace entire column with
# 0 even if error is only in one fold.
errorsInCVLibrary <- apply(Z, 2, function(x) any(is.na(x)))
if(sum(errorsInCVLibrary) > 0) {
Z[, as.logical(errorsInCVLibrary)] <- 0
}
if(all(Z == 0)) {
stop("All algorithms dropped from library")
}
# Compute weights for each algorithm in library.
getCoef <- method$computeCoef(Z = Z, Y = Y, libraryNames = libraryNames,
obsWeights = obsWeights, control = control,
verbose = verbose,
errorsInLibrary = errorsInCVLibrary)
coef <- getCoef$coef
names(coef) <- libraryNames
}) # Finish timing.
# Set a default in case the method does not return the optimizer result.
if(!("optimizer" %in% names(getCoef))) {
getCoef["optimizer"] <- NA
}
# now fit all algorithms in library on entire learning data set and predict on newX
m <- dim(newX)[1L]
predY <- matrix(NA, nrow = m, ncol = k)
# whichScreen <- matrix(NA, nrow = kScreen, ncol = p)
.screenFun <- function(fun, list) {
screen_fn = get(fun, envir = env)
testScreen <- try(do.call(screen_fn, list))
if(inherits(testScreen, "try-error")) {
warning(paste("replacing failed screening algorithm,", fun, ", with All() in full data", "\n "))
out <- rep(TRUE, ncol(list$X))
} else {
out <- testScreen
}
return(out)
}
time_predict = system.time({
whichScreen <- if (length(library$screenAlgorithm) < 2) {
sapply(library$screenAlgorithm, FUN = .screenFun, list = list(Y = Y, X = X, family = family, id = id, obsWeights = obsWeights), simplify = FALSE)
} else {
parallel::parSapply(cl = cluster, X = library$screenAlgorithm, FUN = .screenFun, list = list(Y = Y, X = X, family = family, id = id, obsWeights = obsWeights), simplify = FALSE)
}
whichScreen <- do.call(rbind, whichScreen)
# change to sapply?
# for(s in 1:k) {
# testAlg <- try(do.call(library$library$predAlgorithm[s], list(Y = Y, X = subset(X, select = whichScreen[library$library$rowScreen[s], ], drop=FALSE), newX = subset(newX, select = whichScreen[library$library$rowScreen[s], ], drop=FALSE), family = family, id = id, obsWeights = obsWeights)))
# if(inherits(testAlg, "try-error")) {
# warning(paste("Error in algorithm", library$library$predAlgorithm[s], " on full data", "\n The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
# errorsInLibrary[s] <- 1
# } else {
# predY[, s] <- testAlg$pred
# }
# if(control$saveFitLibrary) {
# fitLibrary[[s]] <- testAlg$fit
# }
# if(verbose) {
# message(paste("full", libraryNames[s]))
# }
# }
.predFun <- function(index, lib, Y, dataX, newX, whichScreen, family, id, obsWeights, verbose, control, libraryNames) {
out <- list(pred = NA, fitLibrary = NULL)
pred_fn = get(lib$predAlgorithm[index], envir = env)
testAlg <- try(do.call(pred_fn, list(Y = Y, X = subset(dataX, select = whichScreen[lib$rowScreen[index], ], drop=FALSE), newX = subset(newX, select = whichScreen[lib$rowScreen[index], ], drop=FALSE), family = family, id = id, obsWeights = obsWeights)))
if(inherits(testAlg, "try-error")) {
warning(paste("Error in algorithm", lib$predAlgorithm[index], " on full data", "\n The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
out$pred <- rep.int(NA, times = nrow(newX))
} else {
out$pred <- testAlg$pred
if(control$saveFitLibrary) {
# eval(bquote(fitLibrary[[.(index)]] <- .(testAlg$fit)), envir = fitLibEnv)
out$fitLibrary <- testAlg$fit
}
}
if(verbose) {
message(paste("full", libraryNames[index]))
}
invisible(out)
}
foo <- parallel::parLapply(cl = cluster, X = seq(k), fun = .predFun, lib = library$library, Y = Y, dataX = X, newX = newX, whichScreen = whichScreen, family = family, id = id, obsWeights = obsWeights, verbose = verbose, control = control, libraryNames = libraryNames)
predY <- do.call('cbind', lapply(foo, '[[', 'pred'))
assign('fitLibrary', lapply(foo, '[[', 'fitLibrary'), envir = fitLibEnv)
rm(foo)
# predY <- do.call('cbind', parLapply(cluster, seq(k), fun = .predFun, lib = library$library, Y = Y, dataX = X, newX = newX, whichScreen = whichScreen, family = family, id = id, obsWeights = obsWeights, verbose = verbose, control = control, libraryNames = libraryNames))
# check for errors
errorsInLibrary <- apply(predY, 2, function(xx) any(is.na(xx)))
if (sum(errorsInLibrary) > 0) {
if (sum(coef[as.logical(errorsInLibrary)]) > 0) {
warning(paste0("Re-running estimation of coefficients removing failed algorithm(s)\n",
"Original coefficients are: \n", paste(coef, collapse = ", "), "\n"))
Z[, as.logical(errorsInLibrary)] <- 0
if (all(Z == 0)) {
stop("All algorithms dropped from library")
}
getCoef <- method$computeCoef(Z = Z, Y = Y, libraryNames = libraryNames,
obsWeights = obsWeights, control = control,
verbose = verbose,
errorsInLibrary = errorsInLibrary)
coef <- getCoef$coef
names(coef) <- libraryNames
} else {
warning("coefficients already 0 for all failed algorithm(s)")
}
}
# Compute super learner predictions on newX.
getPred <- method$computePred(predY = predY, coef = coef, control = control)
}) # Finish timing.
# Add names of algorithms to the predictions.
colnames(predY) <- libraryNames
# Clean up when errors in library.
if(sum(errorsInCVLibrary) > 0) {
getCoef$cvRisk[as.logical(errorsInCVLibrary)] <- NA
}
# Finish timing the full SuperLearner execution.
time_end = proc.time()
# Compile execution times.
times = list(everything = time_end - time_start,
train = time_train,
predict = time_predict)
# Put everything together in a list.
out <- list(
call = call,
libraryNames = libraryNames,
SL.library = library,
SL.predict = getPred,
coef = coef,
library.predict = predY,
Z = Z,
cvRisk = getCoef$cvRisk,
family = family,
fitLibrary = get('fitLibrary', envir = fitLibEnv),
id = id,
varNames = varNames,
validRows = validRows,
method = method,
whichScreen = whichScreen,
control = control,
errorsInCVLibrary = errorsInCVLibrary,
errorsInLibrary = errorsInLibrary,
obsWeights = obsWeights,
metaOptimizer = getCoef$optimizer,
env = env,
times = times
)
class(out) <- c("SuperLearner")
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.