Nothing
# library(testthat)
# library(xgboost)
library(SuperLearner)
if(all(sapply(c("testthat", "xgboost"), requireNamespace))){
testthat::context("Learner: XGBoost")
# Create sample dataset for testing.
set.seed(1)
N <- 200
X <- matrix(rnorm(N * 10), N, 10)
X <- as.data.frame(X)
Y_bin <- rbinom(N, 1, plogis(.2*X[, 1] + .1*X[, 2] - .2*X[, 3] + .1*X[, 3]*X[, 4] - .2*abs(X[, 4])))
table(Y_bin)
SL.library <- c("SL.mean", "SL.xgboost")
# Test xgboost - binary classification
sl <- SuperLearner(Y = Y_bin, X = X, SL.library = SL.library,
cvControl = list(V = 2),
family = binomial())
sl
# Prediction after classification.
pred = predict(sl, X)
summary(pred$pred)
# Test xgboost - regression
Y_reg <- .2*X[, 1] + .1*X[, 2] - .2*X[, 3] + .1*X[, 3]*X[, 4] - .2*abs(X[, 4]) + rnorm(N)
summary(Y_reg)
sl <- SuperLearner(Y = Y_reg, X = X, SL.library = SL.library,
cvControl = list(V = 2),
family = gaussian())
sl
# Prediction after regression, using a dataframe.
pred = predict(sl, X)
summary(pred$pred)
# Test xgboost - multi-classification
# TODO: add test here.
testthat::test_that("Test create.SL.xgboost", {
# Create a new environment to hold the functions.
sl_env = new.env()
xgb_grid = create.SL.xgboost(tune = list(ntrees = c(5, 10), max_depth = c(1, 2),
minobspernode = 10, shrinkage = c(0.1, 0.01, 0.001)), env = sl_env)
xgb_grid
xgb_functions = ls(sl_env)
testthat::expect_equal(length(xgb_functions), 12)
# Load the functions for use in the SuperLearner call.
attach(sl_env)
sl <- SuperLearner(Y = Y_reg, X = X, SL.library = c(SL.library, xgb_grid$names),
cvControl = list(V = 2),
family = gaussian())
print(sl)
detach(sl_env)
})
} # should we add an else, for when package not available?
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.