Nothing
#' Simulation function used to estimate power
#' @param design_result Output from the ANOVA_design function
#' @param alpha_level Alpha level used to determine statistical significance
#' @param correction Set a correction of violations of sphericity. This can be set to "none", "GG" Greenhouse-Geisser, and "HF" Huynh-Feldt
#' @param p_adjust Correction for multiple comparisons. This will adjust p values for ANOVA/MANOVA level effects; see ?p.adjust for options
#' @param emm Set to FALSE to not perform analysis of estimated marginal means
#' @param emm_model Set model type ("multivariate", or "univariate") for estimated marginal means
#' @param contrast_type Select the type of comparison for the estimated marginal means. Default is pairwise. See ?emmeans::`contrast-methods` for more details on acceptable methods.
#' @param emm_comp Set the comparisons for estimated marginal means comparisons. This is a factor name (a), combination of factor names (a+b), or for simple effects a | sign is needed (a|b)
#' @param emm_p_adjust Correction for multiple comparisons; default is "none". See ?summary.emmGrid for more details on acceptable methods.
#' @param nsims number of simulations to perform
#' @param seed Set seed for reproducible results
#' @param verbose Set to FALSE to not print results (default = TRUE)
#' @return Returns dataframe with simulation data (p-values and effect sizes), anova results (type 3 sums of squares) and simple effect results, and plots of p-value distribution.
#'
#' \describe{
#' \item{\code{"sim_data"}}{Output from every iteration of the simulation}
#' \item{\code{"main_result"}}{The power analysis results for ANOVA effects.}
#' \item{\code{"pc_results"}}{The power analysis results for pairwise comparisons.}
#' \item{\code{"manova_results"}}{Default is "NULL". If a within-subjects factor is included, then the power of the multivariate (i.e. MANOVA) analyses will be provided.}
#' \item{\code{"emm_results"}}{The power analysis results of the estimated marginal means.}
#' \item{\code{"plot1"}}{Distribution of p-values from the ANOVA results.}
#' \item{\code{"plot2"}}{Distribution of p-values from the pairwise comparisons results.}
#' \item{\code{"correction"}}{The correction for sphericity applied to the simulation results.}
#' \item{\code{"p_adjust"}}{The p-value adjustment applied to the simulation results for ANOVA/MANOVA omnibus tests and t-tests.}
#' \item{\code{"emm_p_adjust"}}{The p-value adjustment applied to the simulation results for the estimated marginal means.}
#' \item{\code{"nsims"}}{The number of simulations run.}
#' \item{\code{"alpha_level"}}{The alpha level, significance cut-off, used for the power analysis.}
#' \item{\code{"method"}}{Record of the function used to produce the simulation}
#'
#' }
#'
#' @examples
#' \dontrun{
#' ## Set up a within design with 2 factors, each with 2 levels,
#' ## with correlation between observations of 0.8,
#' ## 40 participants (who do all conditions), and standard deviation of 2
#' ## with a mean pattern of 1, 0, 1, 0, conditions labeled 'condition' and
#' ## 'voice', with names for levels of "cheerful", "sad", amd "human", "robot"
#' design_result <- ANOVA_design(design = "2w*2w", n = 40, mu = c(1, 0, 1, 0),
#' sd = 2, r = 0.8, labelnames = c("condition", "cheerful",
#' "sad", "voice", "human", "robot"))
#' power_result <- ANOVA_power(design_result, alpha_level = 0.05,
#' p_adjust = "none", seed = 2019, nsims = 10)
#' }
#' @section References:
#' too be added
#' @importFrom stats pnorm pt qnorm qt as.formula median p.adjust pf sd power
#' @importFrom utils combn
#' @importFrom graphics pairs
#' @importFrom reshape2 melt
#' @importFrom MASS mvrnorm
#' @importFrom afex aov_car
#' @import emmeans
#' @import ggplot2
#' @export
#'
ANOVA_power <- function(design_result,
alpha_level = Superpower_options("alpha_level"),
correction = Superpower_options("correction"),
p_adjust = "none", nsims = 1000, seed = NULL,
verbose = Superpower_options("verbose"),
emm = Superpower_options("emm"),
emm_model = Superpower_options("emm_model"),
contrast_type = Superpower_options("contrast_type"),
emm_p_adjust = "none",
emm_comp = NULL){
#Need this to avoid "undefined" global error from occuring
cohen_f <- partial_eta_squared <- non_centrality <- NULL
#New checks for emmeans input
if (is.null(emm)) {
emm = FALSE
}
if (missing(emm_model)) {
emm_model = "multivariate"
}
#Follow if statements limit the possible input for emmeans specifications
if (emm == TRUE) {
if (is.element(emm_model, c("univariate", "multivariate")) == FALSE ) {
stop("emm_model must be set to \"univariate\" or \"multivariate\". ")
}
if (is.element(contrast_type,
c("pairwise",
"revpairwise",
"eff",
"consec",
"poly",
"del.eff",
"trt.vs.ctrl",
"trt.vs.ctrl1",
"trt.vs.ctrlk",
"mean_chg",
"dunnett",
"tukey"
)) == FALSE ) {
stop("contrast_type must be of an accepted format.
The tukey & dunnett options are not appropriate for models with within subjects factors.
See help(\"contrast-methods\") for details on the exact methods")
}
if (is.element(emm_p_adjust,
c("dunnett",
"tukey",
"sidak",
"scheffe",
"dunnettx",
"mvt",
"holm",
"hochberg",
"hommel",
"bonferroni",
"BH",
"BY",
"fdr",
"none")) == FALSE ) {
stop("emm_p_adjust must be of an acceptable format.
See ?summary.emmGrid for details on the exact methods.")
}
}
if (is.element(p_adjust, c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")) == FALSE ) {
stop("p_adjust must be of an acceptable adjustment method: see ?p.adjust")
}
if (is.element(correction, c("none", "GG", "HF")) == FALSE ) {
stop("Correction for sphericity can only be none, GG, or HF")
}
if (nsims < 10) {
stop("The number of repetitions in simulation must be at least 10; suggested at least 1000 for accurate results")
}
#Set seed, from sim_design function by Lisa DeBruine
if (!is.null(seed)) {
# reinstate system seed after simulation
sysSeed <- .GlobalEnv$.Random.seed
on.exit({
if (!is.null(sysSeed)) {
.GlobalEnv$.Random.seed <- sysSeed
} else {
rm(".Random.seed", envir = .GlobalEnv)
}
})
set.seed(seed, kind = "Mersenne-Twister", normal.kind = "Inversion")
}
#Check to ensure there is a within subject factor -- if none --> no MANOVA
run_manova <- grepl("w", design_result$design)
if (missing(alpha_level)) {
alpha_level <- 0.05
}
if (alpha_level >= 1 | alpha_level <= 0 ) {
stop("alpha_level must be less than 1 and greater than zero")
}
###############
# 2. Read in Environment Data ----
###############
design <- design_result$design #String used to specify the design
if (grepl("w",design) && is.element(emm_p_adjust,
c("dunnett",
"tukey",
"sidak",
"scheffe",
"dunnettx")) == TRUE ) {
warning(
"The emm_p_adjust selection is inappropriate for the specified design.
Consider fdr or holm corrections. See ?summary.emmGrid"
)
}
factornames <- design_result$factornames #Get factor names
n <- design_result$n
mu = design_result$mu # population means - should match up with the design
sd <- design_result$sd #population standard deviation (currently assumes equal variances)
r <- design_result$r # correlation between within factors (currently only 1 value can be entered)
factors <- design_result$factors
design_factors <- design_result$design_factors
sigmatrix <- design_result$sigmatrix
dataframe <- design_result$dataframe
design_list <- design_result$design_list
#Block this logical in Shiny context (at least for now)
#to allow different n per condition:
if (grepl("w", design_result$design) == TRUE && length(unique(design_result$n)) > 1) {
stop("Unequal group sizes are not possible when the design contains within factors")
}
n_vec <- n # store vector n as n - this is because the code below uses n as a single number, so quick fix for legacy reasons
n <- max(n) # now set n to max n for ANOVA_design function
###############
# 3. Specify factors for formula ----
###############
frml1 <- design_result$frml1
frml2 <- design_result$frml2
aov_result <- suppressMessages({aov_car(frml1, #here we use frml1 to enter formula 1 as designed above on the basis of the design
data = dataframe, include_aov = FALSE,
anova_table = list(es = "pes", p_adjust_method = p_adjust)) }) #This reports PES not GES
if (emm == TRUE) {
#Call emmeans with specifcations given in the function
#Limited to specs and model
if (missing(emm_comp)) {
emm_comp = as.character(frml2)[2]
}
specs_formula <- as.formula(paste(contrast_type," ~ ",emm_comp))
emm_result <- suppressMessages({emmeans(aov_result,
specs = specs_formula,
model = emm_model,
adjust = emm_p_adjust)})
#plot_emm = plot(emm_result, comparisons = TRUE)
#make comparison based on specs; adjust = "none" in exact; No solution for multcomp in exact simulation
pairs_result_df <- emmeans_power(emm_result$contrasts, alpha_level = alpha_level)
#rownames from contrasts non readable sticking to row number
#rownames(pairs_result_df) <- as.character(pairs_result_df$contrast)
#pairs_result_df$contrast <- NULL
emm_sim_data <- as.data.frame(matrix(
ncol = nrow(pairs_result_df)*2,
nrow = nsims))
names(emm_sim_data) = c(paste("p_",
rownames(pairs_result_df),
sep = ""),
paste("cohen_f_",
rownames(pairs_result_df),
sep = ""))
} else{
pairs_result_df = NULL
}
#Run MANOVA if within subject factor is included; otherwise ignored
if (run_manova == TRUE) {
manova_result <- Anova_mlm_table(aov_result$Anova)
}
###############
# 5. Set up dataframe for simulation results
###############
#How many possible planned comparisons are there (to store p and es)
possible_pc <- (((prod(
as.numeric(strsplit(design, "\\D+")[[1]])
)) ^ 2) - prod(as.numeric(strsplit(design, "\\D+")[[1]])))/2
#create empty dataframe to store simulation results
#number of columns for ANOVA results and planned comparisons, times 2 (p-values and effect sizes)
if (run_manova == TRUE) {
#create empty dataframe to store simulation results
#number of columns if for ANOVA results and planned comparisons, times 2 (p and es)
#more columns added if MANOVA output included 2^factors
sim_data <- as.data.frame(matrix(
ncol = 2 * (2 ^ factors - 1) + (2 ^ factors) + 2 * possible_pc,
nrow = nsims
)) } else {
sim_data <- as.data.frame(matrix(
ncol = 2 * (2 ^ factors - 1) + 2 * possible_pc,
nrow = nsims
))
}
paired_tests <- combn(unique(dataframe$cond),2)
paired_p <- numeric(possible_pc)
paired_d <- numeric(possible_pc)
within_between <- sigmatrix[lower.tri(sigmatrix)] #based on whether correlation is 0 or not, we can determine if we should run a paired or independent t-test
#Dynamically create names for the data we will store
#Again create rownames based on whether or not a MANOVA should be included
if (run_manova == TRUE) {
names(sim_data) = c(paste("anova_",
rownames(aov_result$anova_table),
sep = ""),
paste("anova_es_",
rownames(aov_result$anova_table),
sep = ""),
paste("p_",
paste(paired_tests[1,],paired_tests[2,],sep = "_"),
sep = ""),
paste("d_",
paste(paired_tests[1,],paired_tests[2,], sep = "_"),
sep = ""),
paste("manova_",
rownames(manova_result),
sep = ""))
} else {
names(sim_data) = c(paste("anova_",
rownames(aov_result$anova_table),
sep = ""),
paste("anova_es_",
rownames(aov_result$anova_table),
sep = ""),
paste("p_",
paste(paired_tests[1,],paired_tests[2,],sep = "_"),
sep = ""),
paste("d_",
paste(paired_tests[1,],paired_tests[2,], sep = "_"),
sep = ""))
}
###############
# 7. Start Simulation ----
###############
#withProgress(message = 'Running simulations', value = 0, { #block outside of Shiny
for (i in 1:nsims) { #for each simulated experiment
#incProgress(1/nsims, detail = paste("Now running simulation", i, "out of",nsims,"simulations")) #Block outside of Shiny
#We simulate a new y variable, melt it in long format, and add it to the dataframe (surpressing messages)
dataframe <- design_result$dataframe # read in dataframe again, because we deleted rows from it below if unequal n
dataframe$y <- suppressMessages({
melt(as.data.frame(mvrnorm(
n = n,
mu = mu,
Sigma = as.matrix(sigmatrix)
)))$value
})
#NEW SECTION TO ALLOW UNEQUAL N
#need if for single n
if (length(n_vec) > 1) {
for (k in 1:length(unique(dataframe$cond))) {
#for each unique condition
if ((n - n_vec[k]) > 0) {
#only sample if we want to remove more than 0 rows
dataframe <-
dataframe[-sample(which(dataframe$cond == unique(dataframe$cond)[k]) , (n -
n_vec[k])) ,]
}
}
}
# We perform the ANOVA using AFEX
#Can be set to NICE to speed up, but required data grabbing from output the change.
aov_result <- suppressMessages({aov_car(frml1, #here we use frml1 to enter fromula 1 as designed above on the basis of the design
data = dataframe, include_aov = FALSE, #Need development code to get aov_include function
anova_table = list(es = "pes",
p_adjust_method = p_adjust,
correction = correction))}) #This reports PES not GES
if (emm == TRUE) {
emm_result <- suppressMessages({emmeans(aov_result,
specs = specs_formula,
model = emm_model,
adjust = emm_p_adjust)})
#plot_emm = plot(emm_result, comparisons = TRUE)
#make comparison based on specs; adjust = "none" in exact; No solution for multcomp in exact simulation
pairs_result <- emm_result$contrasts
pairs_result_df <- as.data.frame(pairs_result)
#Need for exact; not necessary for power function
#Convert t-ratio to F-stat
pairs_result_df$F.value <- (pairs_result_df$t.ratio)^2
#Calculate pes -- The formula for partial eta-squared is equation 13 from Lakens (2013)
pairs_result_df$pes <- pairs_result_df$F.value/(pairs_result_df$F.value + pairs_result_df$df)
#Calculate cohen's f
pairs_result_df$f2 <- pairs_result_df$pes/(1 - pairs_result_df$pes)
pairs_result_df <- pairs_result_df %>% mutate(cohen_f = sqrt(.data$f2)) %>%
select(-.data$F.value,-.data$t.ratio,-.data$SE,
-.data$f2,-.data$pes, -.data$estimate, -.data$df) %>%
select(-.data$cohen_f, -.data$p.value,
.data$p.value, .data$cohen_f)
emm_sim_data[i,] <- c(as.numeric(pairs_result_df$p.value), #p-value for contrast
as.numeric(pairs_result_df$cohen_f) #cohen f
) #
}
# Store MANOVA result if there are within subject factors
if (run_manova == TRUE) {
manova_result <- Anova_mlm_table(aov_result$Anova) # ::: in Shiny
manova_result$p.value <- p.adjust(manova_result$p.value, method = p_adjust)
}
for (j in 1:possible_pc) {
x <- dataframe$y[which(dataframe$cond == paired_tests[1,j])]
y <- dataframe$y[which(dataframe$cond == paired_tests[2,j])]
#this can be sped up by tweaking the functions that are loaded to only give p and dz
ifelse(within_between[j] == 0,
t_test_res <- effect_size_d(x, y, alpha_level = alpha_level), # ::: in Shiny
t_test_res <- effect_size_d_paired(x, y, alpha_level = alpha_level)) # ::: in Shiny
paired_p[j] <- t_test_res$p_value
paired_d[j] <- ifelse(within_between[j] == 0,
t_test_res$d,
t_test_res$d_z)
}
# store p-values and effect sizes for calculations and plots.
#If needed to create different row names if MANOVA is included
if (run_manova == TRUE) {
sim_data[i,] <- c(aov_result$anova_table[[6]], #p-value for ANOVA
aov_result$anova_table[[5]], #partial eta squared
p.adjust(paired_p, method = p_adjust), #p-values for paired comparisons
paired_d, #effect sizes
manova_result[[6]]) #p-values for MANOVA
} else {
sim_data[i,] <- c(aov_result$anova_table[[6]], #p-value for ANOVA
aov_result$anova_table[[5]], #partial eta squared
p.adjust(paired_p, method = p_adjust), #p-values for paired comparisons
paired_d) #effect sizes
}
}
#}) #close withProgress Block outside of Shiny
############################################
#End Simulation ###############
###############
# 8. Plot Results ----
###############
# melt the data into a long format for plots in ggplot2
plotData <- suppressMessages(melt(sim_data[1:(2 ^ factors - 1)], value.name = 'p'))
SalientLineColor <- "#535353"
LineColor <- "Black"
BackgroundColor <- "White"
# plot each of the p-value distributions
#create variable p to use in ggplot and prevent package check error.
p <- plotData$p
# Helper function for string wrapping.
swr = function(string, nwrap = 10) {
paste(strwrap(string, width = 10), collapse = "\n")
}
swr = Vectorize(swr)
# Create line breaks in variable
plotData$variable = swr(chartr("_:", " ", plotData$variable))
plt1 = ggplot(plotData, aes(x = p)) +
scale_x_continuous(breaks = seq(0, 1, by = .1),
labels = seq(0, 1, by = .1)) +
geom_histogram(colour = "black",
fill = "white",
breaks = seq(0, 1, by = .01)) +
geom_vline(xintercept = alpha_level, colour = 'red') +
facet_grid(variable ~ .) +
labs(x = "p") +
theme_bw()
#Plot p-value distributions for simple comparisons
# melt the data into a ggplot friendly 'long' format
p_paired <- sim_data[(2 * (2 ^ factors - 1) + 1):(2 * (2 ^ factors - 1) + possible_pc)]
plotData <- suppressMessages(melt(p_paired, value.name = 'p'))
#create variable p to use in ggplot and prevent package check error.
p <- plotData$p
# Create line breaks in variable
plotData$variable = swr(chartr("_:", " ", plotData$variable))
# plot each of the p-value distributions
plt2 = ggplot(plotData, aes(x = p)) +
scale_x_continuous(breaks = seq(0, 1, by = .1),
labels = seq(0, 1, by = .1)) +
geom_histogram(colour = "black",
fill = "white",
breaks = seq(0, 1, by = .01)) +
geom_vline(xintercept = alpha_level, colour = 'red') +
facet_grid(variable ~ .) +
labs(x = expression(p)) +
theme_bw()
###############
# 9. Sumary of power and effect sizes of main effects and contrasts ----
###############
#Main effects and interactions from the ANOVA
power = as.data.frame(apply(as.matrix(sim_data[(1:(2 ^ factors - 1))]), 2,
function(x) mean(ifelse(x < alpha_level, 1, 0) * 100)))
es = as.data.frame(apply(as.matrix(sim_data[((2^factors):(2 * (2 ^ factors - 1)))]), 2,
function(x) mean(x)))
main_results <- data.frame(power,es)
names(main_results) = c("power","effect_size")
#Data summary for pairwise comparisons
power_paired = as.data.frame(apply(as.matrix(sim_data[(2 * (2 ^ factors - 1) + 1):(2 * (2 ^ factors - 1) + possible_pc)]), 2,
function(x) mean(ifelse(x < alpha_level, 1, 0) * 100)))
es_paired = as.data.frame(apply(as.matrix(sim_data[(2 * (2 ^ factors - 1) + possible_pc + 1):(2*(2 ^ factors - 1) + 2 * possible_pc)]), 2,
function(x) mean(x)))
pc_results <- data.frame(power_paired, es_paired)
names(pc_results) = c("power","effect_size")
#Data summary for emmeans
if (emm == TRUE) {
emm_power = as.data.frame(apply(as.matrix(emm_sim_data[(1):(nrow(pairs_result_df))]), 2,
function(x) mean(ifelse(x < alpha_level, 1, 0) * 100)))
emm_es = as.data.frame(apply(as.matrix(emm_sim_data[((nrow(pairs_result_df) + 1):(nrow(pairs_result_df)*2))]), 2,
function(x) mean(x)))
emm_results <- data.frame(pairs_result_df$contrast,emm_power, emm_es)
names(emm_results) = c("contrast","power","cohen_f")
} else{
emm_results = NULL
}
#Simulation results from MANOVA
if (run_manova == TRUE) {
power_MANOVA = as.data.frame(apply(as.matrix(sim_data[((2*(2 ^ factors - 1) + 2 * possible_pc + 1):(2 ^ factors + (2*(2 ^ factors - 1) + 2 * possible_pc)))]), 2,
function(x) mean(ifelse(x < alpha_level, 1, 0) * 100)))
manova_result <- data.frame(power_MANOVA)
names(manova_result) = c("power")
}
#######################
# Return Results ----
#######################
if (verbose == TRUE) {
# The section below should be blocked out when in Shiny
cat("Power and Effect sizes for ANOVA tests")
cat("\n")
print(main_results, digits = 4)
cat("\n")
cat("Power and Effect sizes for pairwise comparisons (t-tests)")
cat("\n")
print(pc_results, digits = 4)
cat("\n")
if (emm == TRUE) {
cat("Power and Cohen's f from estimated marginal means")
cat("\n")
print(emm_results, digits = 4)
cat("\n")
}
if (run_manova == TRUE) {
cat("\n")
cat("Within-Subject Factors Included: Check MANOVA Results")
cat("\n")
}
cat("\n")
}
#Create empty value if no MANOVA results are included
if (run_manova == FALSE) {
manova_result = NULL
}
# Return results in list()
structure(list(sim_data = sim_data,
main_results = main_results,
pc_results = pc_results,
manova_results = manova_result,
emm_results = emm_results,
plot1 = plt1,
plot2 = plt2,
correction = correction,
p_adjust = p_adjust,
emm_p_adjust = emm_p_adjust,
nsims = nsims,
alpha_level = alpha_level,
method = "ANOVA_power"),
class = "sim_result")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.