Nothing
files <- c("PROACT_2013_08_12_Demographics_Dictionary.csv", "PROACT_2013_08_12_SUBJECT_ALS_HX_Dictionary.csv",
"PROACT_2013_08_12_FAMHX_Dictionary.csv", "PROACT_2013_08_12_ALSFRS_Dictionary.csv",
"PROACT_2013_08_12_VITALS_Dictionary.csv", "PROACT_2013_08_22_TREATMENT_Dictionary.csv",
"PROACT_2013_08_12_SVC_Dictionary.csv", "PROACT_2013_08_12_FVC_Dictionary.csv",
"PROACT_2013_08_12_RILUZOLE_Dictionary.csv", "PROACT_2013_08_12_DEATH_Dictionary.csv",
"PROACT_2013_08_22_LABS_Dictionary.csv",
"PROACT_2013_08_12_Demographics_Data.xlsx", "PROACT_2013_08_12_SUBJECT_ALS_HX_Data.xlsx",
"PROACT_2013_08_12_FAMHX_Data.xlsx", "PROACT_2013_08_12_ALSFRS_Data.xlsx",
"PROACT_2013_08_12_VITALS_Data.xlsx", "PROACT_2013_08_22_TREATMENT_Data.xlsx",
"PROACT_2013_08_12_SVC_Data.xlsx", "PROACT_2013_08_12_FVC_Data.xlsx",
"PROACT_2013_08_12_RILUZOLE_Data.xlsx", "PROACT_2013_08_12_DEATH_Data.xlsx")
if (interactive()) {
infolder <- readline("Please specify the directory where the raw PRO ACT data
downloaded from https://nctu.partners.org/ProACT are stored
(press ENTER if it is the same as the current working directory): ")
ifelse(infolder == "", infolder <- "./", infolder <- infolder)
outfolder <- readline("Please specify a directory where I should save the data;
it should be relative to the previously entered directory
(press ENTER if it is the same as the previous): ")
ifelse(outfolder == "", outfolder <- "./", outfolder <- outfolder)
}
if(!file.exists(infolder)) stop(paste0('directory "', infolder, '" does not exist'))
if(!file.exists(outfolder)) stop(paste0('directory "', outfolder, '" does not exist'))
wdbase <- getwd()
setwd(infolder)
m <- files %in% list.files()
if (!all(m))
cat("File(s)", files[!m], "missing; aborting.\n")
cat("This is going to take a while ...\n")
#--- 1.1 - Download dictionaries -----------------------------------------------------------------------#
d <- c("PROACT_2013_08_12_Demographics_Dictionary.csv", "PROACT_2013_08_12_SUBJECT_ALS_HX_Dictionary.csv",
"PROACT_2013_08_12_FAMHX_Dictionary.csv", "PROACT_2013_08_12_ALSFRS_Dictionary.csv",
"PROACT_2013_08_12_VITALS_Dictionary.csv", "PROACT_2013_08_22_TREATMENT_Dictionary.csv",
"PROACT_2013_08_12_SVC_Dictionary.csv", "PROACT_2013_08_12_FVC_Dictionary.csv",
"PROACT_2013_08_12_RILUZOLE_Dictionary.csv", "PROACT_2013_08_12_DEATH_Dictionary.csv",
"PROACT_2013_08_22_LABS_Dictionary.csv")
library("openxlsx")
dict <- function(d){
tmp <- read.table(d, sep = "|", header = TRUE, na.string = "", quote = "\"")
}
DICT <- lapply(d,dict)
for(i in 1:length(DICT)){
names(DICT)[[i]] <- as.character(DICT[[i]][1,"FormName"])
}
#str(DICT)
#--- 1.2 - Download datasets ---------------------------------------------------------------------------#
f <- c("PROACT_2013_08_12_Demographics_Data.xlsx", "PROACT_2013_08_12_SUBJECT_ALS_HX_Data.xlsx",
"PROACT_2013_08_12_FAMHX_Data.xlsx", "PROACT_2013_08_12_ALSFRS_Data.xlsx",
"PROACT_2013_08_12_VITALS_Data.xlsx", "PROACT_2013_08_22_TREATMENT_Data.xlsx",
"PROACT_2013_08_12_SVC_Data.xlsx", "PROACT_2013_08_12_FVC_Data.xlsx",
"PROACT_2013_08_12_RILUZOLE_Data.xlsx", "PROACT_2013_08_12_DEATH_Data.xlsx")
labs <- read.csv("PROACT_2013_08_27_LABS_Data.csv", check.names=FALSE)
db <- function(f){
tmp <- read.xlsx(f, check.names=FALSE)
}
RALS <- lapply(f,db)
##-- Add lab dataset
FormID <- rep(146,nrow(labs))
labs$FormID <- FormID
labs <- labs[c("SubjectID","FormID", "Test Name", "Test Result", "Test Unit", "Laboratory Delta")]
RALS[["labs"]] <- labs
for(i in 1:length(RALS)){
if(RALS[[i]][1,"FormID"]==DICT[[i]][1,"FormID"]){
names(RALS)[[i]] <- as.character(DICT[[i]][1,"FormName"])
}
}
#--- 1.3 - Take the information from the dictionaries and apply labels ------------------------------#
##-- Change labels
nam <- list()
for(i in 1:length(d)){
DICT[[i]][,"FieldID"] <- paste("V", DICT[[i]][,"FieldID"], sep = "_")
DICT[[i]][,"FormID"] <- paste("F", DICT[[i]][,"FormID"], sep = "_")
nam[[i]] <- subset(DICT[[i]], select = c(FormID, FieldID, Field_Name))[!duplicated(subset(DICT[[i]], select = c(FormID, FieldID, Field_Name))),]
}
for(i in 1:length(nam)){
if(nam[[i]][1,"FormID"]==DICT[[i]][1,"FormID"]){
names(nam)[[i]] <- as.character(DICT[[i]][1,"FormName"])
}
}
##-- Save the dictionary
vname <- list()
for(i in 1:length(d)){
vname[[i]] <- subset(DICT[[i]], select = c(FormID, FormName, FieldID, Field_Name, Value))
}
for(i in 1:length(DICT)){
names(vname)[[i]] <- as.character(DICT[[i]][1,"FormName"])
}
v2name <- vname[[1]]
for (i in 2:length(vname))
v2name <- merge(v2name, vname[[i]], all = T)
### some of the variables are not defined in the dictionary
nam.datfra <- names(RALS)
for(f in nam.datfra){
for(i in 3:ncol(RALS[[f]])){
for(j in 1:length(nam[[f]][,"Field_Name"])){
if(names(RALS[[f]])[i] == nam[[f]][,"Field_Name"][j]) {
colnames(RALS[[f]])[i] <- nam[[f]][,"FieldID"][j]
}
}
}
}
for(f in nam.datfra){
d <- grep("Delta$", nam[[f]][,"Field_Name"])
if (length(d) > 0 && !any(c("Onset Delta", "Diagnosis Delta") %in% nam[[f]][d,"Field_Name"])
#!any(c("V_1417", "V_1418") %in% nam[[f]][d,"FieldID"])
) {
names(RALS[[f]])[names(RALS[[f]]) == nam[[f]][d,"FieldID"]] <- "Delta"
nm <- names(RALS[[f]])
nm[nm == "Delta"] <- nm[3]
nm[3] <- "Delta"
RALS[[f]] <- RALS[[f]][, nm]
### only for debugging
}
}
##-- Delete the extra summary row in tables: "Death Report", "Riluzole use"
x <- RALS[["Death Report"]]
y <- subset(x, !SubjectID=="(3484 row(s) affected)")
RALS[["Death Report"]] <- y
x <- RALS[["Riluzole use"]]
y <- subset(x, !SubjectID=="(7108 row(s) affected)")
RALS[["Riluzole use"]] <- y
#save("RALS",file="RALS.Rda")
#save("v2name",file="v2name.Rda")
#--- 2 - Clean up datasets -----------------------------------------------------------------------------#
##-- Save the dataframes to clean them
RALScomp <- RALS
RALSclean <- RALS
#--- 2.1 - Clean up ALSFRS -----------------------------------------------------------------------------#
x <- RALS[["ALSFRS(R)"]]
##-- Explore the data
## Frequency tables
#apply(x[-1],2,table,useNA="ifany") ##### THERE ARE 167 <NA> IN "Delta"
##-- Fix Gastrostomy
### only one can be missing
gastrostomy <- with(x, !is.na(V_1218) & !is.na(V_1219)) # Identify when both columns have values (good = at least one NA)
x[gastrostomy, "V_1218"] <- pmax(x[gastrostomy, "V_1218"], # Substitute the values of V_1218 by the maximum between V_1218 and V_1219
x[gastrostomy, "V_1219"])
x[gastrostomy, "V_1219"] <- NA # Delete the values of V_1219 where both columns have values (gastrotomy)
x$V_121819 <- with(x, ifelse(is.na(V_1219), V_1218, V_1219)) # Obtain one column for "Cutting"
##-- Calculate ALSFRS
# replace V_1214 with V_1230 for ALSFRS scores...
x$V_121430 <- with(x, ifelse(is.na(V_1214), V_1230, V_1214)) # Substitute NA of V_1214 (Respiratory) by V_1230 (Dyspnea)
x$ALSFRS <- as.numeric(as.character(x$V_1228)) # Define ALSFRS as ALSFRS Total(V_1228)
#table(x$ALSFRS, useNA="ifany") ##### <ERROR/FIXME> One value is equal than 44 </ERROR/FIXME>
RNA <- is.na(x$ALSFRS) # Define RNA as NA of ALSFRS
#table(RNA) ##### NA = 9172
x$ALSFRS[!RNA] <- with(x[!RNA,], V_1213 + V_1214 + V_1215 + # Obtain ALSFRS without considering NA - We have everything as before except for only one column of "cutting"
V_1216 + V_1217 + ifelse(is.na(V_1218), V_1219, V_1218) +
V_1220 + V_1221 + V_1222 + V_1223, na.rm = TRUE)
#table(x$ALSFRS, useNA="ifany") ##### <ERROR/FIXED> The value 44 was fixed </ERROR/FIXED>
##### NA = 9219
x$ALSFRS[RNA] <- with(x[RNA,], V_1213 + V_1215 + V_1216 + V_1217 + # Obtain NA of ALSFRS - Instead of V_1214 we have V_1230
ifelse(is.na(V_1218), V_1219, V_1218) +
V_1220 + V_1221 + V_1222 + V_1223 + V_1230, na.rm = TRUE)
A <- with(x, V_1213 + V_121430 + V_1215 + # Verify that ALSFRS is correct
V_1216 + V_1217 + V_121819 +
V_1220 + V_1221 + V_1222 + V_1223)
wrongALSFRS <- subset(x, abs(A - x$ALSFRS) > 0)$SubjectID
##-- Save the complete dataset
### For this dataset, duplicated cases cannot be found by delta due to "NA"
#str(x)
RALScomp[["ALSFRS(R)"]] <- x
#str(RALScomp[["ALSFRS(R)"]])
##-- Delete ALSFRS Total and ALSFRS-R Total
x$V_1228 <- x$V_1229 <- NULL
##-- Obtain subset with "Delta" available in ALSFRS data
### There are 65 cases with "Delta" and without "ALSFRS" score
### only subjects with ALS scores
x <- subset(x, !is.na(Delta)) # Select data with "delta" information
#y <- subset(x, is.na(ALSFRS))
##-- Define Subject indexes
### only subjects with ALS scores available are interesting
id <- unique(x$SubjectID) # vector with the subjects (4838) who have "Delta" information
##-- Debug duplicated cases
dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$Delta))) # identify duplicated cases by "delta"
# uniquexHS <- ddply(x, .(SubjectID), function(a){
# unique(a)
# })
###<FIXME> there are duplicated SubjectIDs but with different values ...</FIXME>
### Total duplicated cases = 9. Specifically, the subjects with the problem are 603836; 839490
### Solution: Delete the duplicated cases
#table(dup)
id[dup]
wi <- id[dup]
if (sum(dup) > 0) {
wi <- id[dup] # SujectID of the duplicated cases
for (w in wi) {
ind <- which(x$SubjectID == w) # Row ID of the duplicated cases
nind <- ind[duplicated(x[ind, "Delta"])] # Row ID of the case which is duplicated
x <- x[-nind,] # Data without the duplicated cases
}
}
##-- Save the cleaned dataset
RALSclean[["ALSFRS(R)"]] <- x
#str(RALSclean[["ALSFRS(R)"]])
#--- 2.2 - Clean up Demographics -----------------------------------------------------------------------#
x <- RALS[["Demographics"]]
##-- Clean up the dataset
### Eliminate the 37 rows with the ERROR in Ethnicity WITHOUT MISSING THE INFORMATION
## ---- ETHNICITY
idx <- unique(x$SubjectID)
### These are the same duplicated cases than when we are working with the subjects who have "delta" information in the ALSFRS dataset
dup <- sapply(idx, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "Subject"
#table(dup)
wi <- idx[dup]
y <- subset(x, SubjectID %in% wi)
#table(y$V_1204)
if (sum(dup) > 0) {
wi <- idx[dup] # SujectID of the duplicated cases
for (w in wi) {
ind <- which(x$SubjectID == w) # Row ID of the duplicated cases
nind <- ind[duplicated(x[ind, "SubjectID"])] # Row ID of the case which is duplicated
x <- x[-nind,] # Data without the duplicated cases
}
}
#table(x$V_1204)
for (w in wi) {
x$V_1204[x$SubjectID==w] <- "Hispanic or Latino"
}
## ---- RACE
### Some columns have value equal to 0
##e.g.Subject= 902
x$Race <- 4
x$Race[!is.na(x$V_1211)] <- 1
x$Race[!is.na(x$V_1207)] <- 2
x$Race[!is.na(x$V_1208)] <- 3
x$Race[!is.na(x$V_1393)] <- 4
x$Race <- factor(x$Race, labels = c("Caucasian", "Asian", "Black/African American", "Unkown"))
y <- subset(x,SubjectID==902)
### CORRECTION
x$V_1211[x$V_1211==0] <- NA
x$V_1207[x$V_1207==0] <- NA
x$V_1208[x$V_1208==0] <- NA
x$V_1393[x$V_1393==0] <- NA
x$Race <- 4
x$Race[!is.na(x$V_1211)] <- 1
x$Race[!is.na(x$V_1207)] <- 2
x$Race[!is.na(x$V_1208)] <- 3
x$Race[!is.na(x$V_1393)] <- 4
x$Race <- factor(x$Race, labels = c("Caucasian", "Asian", "Black/African American", "Unkown"))
y <- subset(x,SubjectID==902)
## ---- Sex: cleanup levels
x$Sex <- x$V_1205
x$Sex <- x$Sex[, drop = TRUE] # Drops the levels that do not occur
## ---- Age
x$Age <- x$V_1257
##-- Save the complete dataset
RALScomp[["Demographics"]] <- x
##-- Save the cleaned dataset
#x <- merge(x, SubjectIDs, by = "SubjectID") ## We do not have "SubjectsIDs"
x$Delta <- NULL
RALSclean[["Demographics"]] <- x
#--- 2.3 - Clean up Labs -------------------------------------------------------------------------------#
##### THIS STEP IS LOCATED IN THE FILE NAMED "CleanupLabs.R"
#--- 2.4 - Clean up Family History ---------------------------------------------------------------------#
x <- RALS[["Family History"]]
##-- Explore duplicated cases
## Identify and check the information of duplicated cases
idx <- unique(x$SubjectID)
# dup <- sapply(idx, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "SUBJECT"
#table(dup)
#y <- subset(x, SubjectID==427558 | SubjectID==434916) # The difference is only two cases with respect to the dataset defined by Delta of ALSFRS scores
wi <- idx[dup]
##-- Clean up some columns
### collapse stroke entries
x$V_1419ND <- x$V_1419
#table(x$V_1419ND, useNA="ifany")
x$V_1419ND <- factor(x$V_1419ND, levels=c(levels(x$V_1419ND), "STROKE"))
x$V_1419ND[grep("STROKE", x$V_1419ND)] <- "STROKE"
x$V_1419ND[x$V_1419ND == ""] <- NA
x$V_1419ND <- x$V_1419ND[, drop = TRUE]
## Clean up levels of V_1420
x$V_1420[x$V_1420 == 0] <- NA
x$V_1420[x$V_1420 == ""] <- NA
### There is a case with "SROKES"
x$V_1420 <- factor(x$V_1420, levels=c(levels(x$V_1420), "STROKE"))
x$V_1420[x$V_1420 == "SROKES"] <- "STROKE"
#x$V_1420[grep("STROKE", x$V_1420)] <- "STROKE"
x$V_1420 <- x$V_1420[, drop = TRUE]
#table(x$V_1420, useNA="ifany")
###In V_1419 = OTHER, we are missing the information
y <- subset(x,V_1420=="STROKE")
x$V_1419ND[x$V_1419 == "OTHER" & x["V_1420"]=="STROKE"] <- "STROKE"
x$V_1419ND[x$V_1419 == "OTHER" & x["V_1420"]=="STROKE 1/2 SISTER"] <- "STROKE"
y <- subset(x,V_1420=="STROKE")
y <- subset(x,V_1420=="STROKE 1/2 SISTER")
#table(x$V_1419ND, useNA="ifany")
##-- Save the complete dataset
RALScomp[["Family History"]] <- x
##-- Delete some columns
### family information is time constant
x$Delta <- NULL
### remove completely missing variables ----- 40 - 1 (DELTA) - 13 = 26 COLUMNS + 1(V_1419ND) = 27 COLUMNS
x <- x[, sapply(x, function(a) any(!is.na(a)))]
##-- Explore duplicated cases
## Identify and check the information of duplicated cases
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "SUBJECT"
#table(dup)
##-- Merge information of duplicated subjects
## Merge numerical variables
x1 <- x
x1 <- aggregate(x[-c(1:3,21,22,27)], by=list(name=x$SubjectID), sum, na.rm = TRUE)
x1[x1==2] <- 1 # Now there are some "2"s in the columns which need to be recode. This happened when the same person has more than one disease
names(x1)[names(x1)=="name"] <- "SubjectID"
x2 <- x[c(1:3,21,22,27)]
x <- merge(x1,x2,by=c("SubjectID"),all=TRUE)
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "SUBJECT"
#table(dup)
# wi <- id[dup]
## Merge categorical variables
x$V_1419MOD <- NA
for(i in 1:length(id[dup])){
x$V_1419MOD[x$SubjectID==id[dup][i]] <- paste(x$V_1419ND[x$SubjectID==id[dup][i]], collapse =" ")
}
x1 <- subset(x, is.na(V_1419MOD))
x2 <- subset(x, !is.na(V_1419MOD))
x1$V_1419MOD <- x1$V_1419ND
#str(x1)
#str(x2)
x2$V_1419MOD <- as.factor(x2$V_1419MOD)
#str(x2)
x <- rbind(x1,x2)
#str(x)
x$V_1419MOD <- x$V_1419MOD[, drop = TRUE]
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "SUBJECT"
#table(dup)
# wi <- id[dup]
## Recode levels of V_1419MOD
x$V_1419modl <- as.character(x$V_1419MOD)
x$V_1419modl[x$V_1419modl=="DAT ALS"] <- "ALS DAT"
x$V_1419modl[x$V_1419modl=="OTHER ALS"] <- "ALS OTHER"
x$V_1419modl[x$V_1419modl=="OTHER DAT"] <- "DAT OTHER"
x$V_1419modl[x$V_1419modl=="OTHER PARKINSON'S DISEASE"] <- "PARKINSON'S DISEASE OTHER"
x$V_1419modl[x$V_1419modl=="PARKINSON'S DISEASE ALS"] <- "ALS PARKINSON'S DISEASE"
x$V_1419modl[x$V_1419modl=="PARKINSON'S DISEASE DAT"] <- "DAT PARKINSON'S DISEASE"
x$V_1419modl <- x$V_1419modl[, drop = TRUE]
##-- Explore data with information in V_1287
y <- subset(x, is.na(V_1419modl))
#table(x$V_1419modl, useNA="ifany")
x$V_1419modl[is.na(x$V_1419modl)] <- "ALS"
# x$V_1419modl <- as.factor(x$V_1419modl)
#table(x$V_1419modl, useNA="ifany")
##-- Delete duplicated cases
x <- subset(x, !duplicated(SubjectID))
##-- Create a dataset with all the Subjects with Delta information
### fill in missing family information (assuming "no" instead of NA)
s <- id[!(id %in% x$SubjectID)] #4838 - 512 = 4326; subjects with ALS score - subjects with FAM HX (the second one is a subset of the first one)
X <- matrix(NA, nrow = length(s), ncol = ncol(x) - 1)
colnames(X) <- colnames(x)[-1]
X <- as.data.frame(X)
X$FormID <- x$FormID[1]
X$SubjectID <- s
x <- rbind(x, X)
ff <- colnames(x)[!colnames(x) %in% c("SubjectID", "FormID", "Delta", "V_1419", "V_1420", "V_1419ND", "V_1419MOD", "V_1419modl", "V_1287")]
#colnames(x)
#ff
for (f in ff) {
x[[f]][x[[f]]==0] <- NA
}
#table(x$V_1288,useNA="ifany")
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "SUBJECT"
##-- Save the cleaned dataset
RALSclean[["Family History"]] <- x
#--- 2.5 - Clean up ALS History ------------------------------------------------------------------------#
x <- RALS[["Subject ALS History"]]
##-- Explore the data
## Frequency tables
#str(x)
#View(x) # To see the duplicated cases
### The column "Site of Onset" generates one new row for the same Subject,
### many examples can be found at the beginning of the dataset
apply(x[-c(10,11,12,13,16,17)],2,table,useNA="ifany")
apply(x["V_1247"],2,table,useNA="ifany") # OBS: 9 cases with ".", 1 case "Weakness"
apply(x["V_1248"],2,table,useNA="ifany") # OBS: We are not interested in this column
y <- subset(x,x["V_1248"]=="farciculation hands") # OBS: Check this category - This category was classified in the V_1247-Symptom as "OTHER"
y <- subset(x,x["V_1248"]=="other") # OBS: Check this category
##-- Clean up some columns
## Clean up factor levels of "Symptom"
x$Symptoms <- factor(x$V_1247)
x$Symptoms[x$Symptoms == "."] <- NA
x$Symptoms[x$Symptoms == ""] <- NA
x$Symptoms[x$Symptoms == "Weakness"] <- "WEAKNESS"
x$Symptoms <- x$Symptoms[, drop = TRUE]
levels(x$Symptoms)
## Clean up factor levels of "Site of Onset"
### The column "Site of Onset" generates one new row for the same Subject, many examples can be found at the beginning of the dataset
levels(x$V_1416)
x$V_1416[x$V_1416 == ""] <- NA
x$V_1416 <- x$V_1416[, drop = TRUE]
##-- Save the complete data
RALScomp[["Subject ALS History"]] <- x
##-- Produce table with only SubjectID and Onset / OnsetSite
x1 <- x[!is.na(x$V_1417), c("SubjectID", "V_1417")]
names(x1)[2] <- "Onset"
#table(x1$Onset, useNA="ifany") ### There are 10 missing values in Onset. THIS WAS VERIFIED IN THE XLS FILE
x1 <- x1[!duplicated(x1$SubjectID),]
#idx1 <- unique(x1$SubjectID)
#length(idx1)
x2 <- x[!is.na(x$V_1416), c("SubjectID", "V_1416")]
names(x2)[2] <- "OnsetSite"
### long format symptoms to wide format
x3 <- x[!is.na(x$Symptoms), c("SubjectID", "Symptoms")]
X <- model.matrix(~ Symptoms - 1, data = x3) # Create a matrix in which the columns are the symptoms
ind <- split(1:nrow(X), x3$SubjectID)
Y <- matrix(0, nrow = length(id), ncol = nlevels(x3$Symptoms))
for (i in 1:length(ind))
Y[names(ind)[i] == id,] <-
as.integer(colSums(X[ind[[i]],,drop = FALSE]) > 0)
colnames(Y) <- levels(x3$Symptoms)
Y <- as.data.frame(Y)
Y <- lapply(Y, function(x) factor(x, labels = c("no", "yes")))
Y <- as.data.frame(Y)
Y$SubjectID <- id
### merge Onset / OnsetSite / Symptoms
tmp <- merge(merge(x1, x2, by = "SubjectID", all=T), Y, by = "SubjectID", all=T)
## Check missing data of Symptoms, Onset and OnsetSite
w <- subset(tmp, is.na(Onset))
idOnsetna <- unique(w$SubjectID) ### These subjects do not have Onset in the xls file
y1 <- subset(x,SubjectID==idOnsetna[1])
for(i in 2:length(idOnsetna)){
tmpy <- subset(x,SubjectID==idOnsetna[i])
y1 <- rbind(y1,tmpy)
}
y2 <- subset(Y,SubjectID==idOnsetna[1])
for(i in 2:length(idOnsetna)){
tmpy <- subset(Y,SubjectID==idOnsetna[i])
y2 <- rbind(y2,tmpy)
}
y3 <- subset(Y, SubjectID==idOnsetna[1])
y4 <- subset(x3, SubjectID==idOnsetna[1])
##-- Save the cleaned tables
RALSclean[["Subject ALS History"]] <- x
RALSclean[["Medical History"]] <- tmp
#--- 2.6 - Clean up Forced Vital Capacity --------------------------------------------------------------#
x <- RALS[["Forced Vital Capacity"]]
##-- Clean up
## ---- V_1185
#table(x$V_1185, useNA="ifany")
x$V_1185MOD <- x$V_1185
x$V_1185MOD[x$V_1185MOD==""] <- NA
x$V_1185MOD[x$V_1185MOD==". 0"] <- 0
x$V_1185MOD[x$V_1185MOD=="X.XX"] <- NA
x$V_1185MOD[grep("%", x$V_1185MOD)] <- NA
x$V_1185MOD <- x$V_1185MOD[, drop = TRUE]
#table(x$V_1185MOD, useNA="ifany")
x$V_1185NUM <- as.numeric(as.character(x$V_1185MOD))
## ---- V_1188
#table(x$V_1188, useNA="ifany")
x$V_1188MOD <- x$V_1188
x$V_1188MOD[x$V_1188MOD==82] <- NA ### Mistake (only 1 case)
##-- Save the complete dataset
### This dataset has duplicated cases (by delta). There are NAs in delta.
RALScomp[["Forced Vital Capacity"]] <- x
x <- subset(x, !is.na(V_1185NUM))
#summary(x$Delta)
x <- subset(x, !is.na(Delta))
##-- Explore duplicated cases
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$Delta))) # identify duplicated cases by "Delta"
#table(dup)
# wi <- id[dup]
# dupx <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)))) # identify duplicated cases by all the columns
### <FIXME> there are duplicated SubjectIDs but with different values ...</FIXME>
### <FIXME> which ones are correct??? </FIXME>
### Solution: DELETE THEM. CHECK THE NUMBER OF CASES WITH RESPECT TO THE TOTAL
### In total 42 cases with different information
x <- subset(x, !duplicated(paste(SubjectID, Delta)))
##-- Save the cleaned dataset
RALSclean[["Forced Vital Capacity"]] <- x
#--- 2.7 - Clean up Vital Signs ------------------------------------------------------------------------#
x <- RALS[["Vital Signs"]]
y <- subset(x,V_1177==98.60000) ### Maximum value 98.60 - Temperature without units
##-- Clean up the data
## ---- TEMPERATURE
x$temperature <- x$V_1177
x$temperature[x$temperature==98.60000] <- (98.60000-32)*(5/9)
x$V_1170[x$V_1170 == ""] <- NA
x$V_1170[x$V_1170 == "ND"] <- NA
x$V_1169[x$V_1169 == ""] <- NA
x$V_1169[x$V_1169 == "ND"] <- NA
x$V_1170NUM <- as.numeric(as.character(x$V_1170))
x$V_1169NUM <- as.numeric(as.character(x$V_1169))
## ---- HEIGHT
### height is not time varying - COVERT UNITS
x$V_1171 <- as.numeric(as.character(x$V_1171))
height <- subset(x, !is.na(V_1171))[, c("SubjectID", "V_1171", "V_1181")]
height <- subset(height, !duplicated(SubjectID))
#table(height$V_1181, useNA="ifany")
height$Height <- with(height, ifelse(V_1181 == "Inches", V_1171 * 2.54, V_1171))
height$V_1181 <- height$V_1171 <- NULL
RALScomp[["Demographics"]] <- merge(RALScomp[["Demographics"]], height, "SubjectID", all = TRUE)
## ---- WEIGHT
## Convert weight units
#table(x$V_1180, useNA="ifany")
x$V_1178 <- as.numeric(as.character(x$V_1178))
x$weight <- with(x, ifelse(V_1180 == "Pounds", V_1178 * 0.45359236999999997, V_1178))
#x$V_1180 <- x$V_1178 <- NULL
RALScomp[["Vital Signs"]] <- x
##-- Save height in dataset "Demographics" cleaned
height <- subset(x, !is.na(V_1171))[, c("SubjectID", "V_1171", "V_1181")]
height <- subset(height, !duplicated(SubjectID))
height$Height <- with(height, ifelse(V_1181 == "Inches", V_1171 * 2.54, V_1171))
height$V_1181 <- height$V_1171 <- NULL
RALSclean[["Demographics"]] <- merge(RALSclean[["Demographics"]], height, "SubjectID", all = TRUE)
##-- Debug useless rows and duplicated cases
### remove height and height units
x$V_1171 <- x$V_1181 <- NULL
### remove complete useless rows
x <- subset(x, rowSums(is.na(x)) < length(x)-10) # 10 = 8 (categorical columns) + 1(SubjectID) + 1(FormID)
### e.g. Good criteria to delete these duplicated cases
w1 <- subset(x, SubjectID==3551)
w2 <- subset(x, SubjectID==2956)
x <- subset(x, !duplicated(paste(SubjectID, Delta)))
### e.g. Good criteria to delete these duplicated cases
w3 <- subset(x, SubjectID==3551)
w4 <- subset(x, SubjectID==2956)
##-- Save the cleaned dataset
RALSclean[["Vital Signs"]] <- x
#--- 2.8 - Clean up Slow Vital Signs -------------------------------------------------------------------#
x <- RALS[["Slow Vital Capacity"]]
##-- Save the complete dataset
#y <- subset(x, is.na(Delta))
RALScomp[["Slow Vital Capacity"]] <- x
##-- Eliminate rows with NA in V_1262 - Subject Liters (Trial 1)
x <- subset(x, !is.na(V_1262))
##-- Eliminate rows without Delta information # OBS: JUSTIFICATION - Longitudinal data
#summary(x$Delta)
x <- subset(x, !is.na(Delta))
### THERE ARE NOT DUPLICATED CASES BY DELTA
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$Delta))) # identify duplicated cases by "Delta"
##-- Save the cleaned data
RALSclean[["Slow Vital Capacity"]] <- x
#--- 2.9 - Clean up Treatment --------------------------------------------------------------------------#
x <- RALS[["Treatment Group"]]
##-- Check duplicated cases - THERE ARE NOT DUPLICATED CASES
idx <- unique(x$SubjectID)
# dup <- sapply(idx, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "subject"
#table(dup)
##-- Save the complete dataset
RALScomp[["Treatment Group"]] <- x
##-- Save the cleaned data
RALSclean[["Treatment Group"]] <- x
#--- 2.10 - Clean up RILUZOLE --------------------------------------------------------------------------#
#names(RALSclean)
x <- RALS[["Riluzole use"]]
##-- Check duplicated cases
### THERE ARE NOT DUPLICATED CASES
idx <- unique(x$SubjectID)
##-- Save the complete dataset
RALScomp[["Riluzole use"]] <- x
##-- Clean useless columns
x$"Riluzole use Day 0" <- x$"Riluzole use Date" <- NULL
#str(x)
##-- Save the cleaned data
RALSclean[["Riluzole use"]] <- x
#--- 2.11 - Clean up Death Report ----------------------------------------------------------------------#
x <- RALS[["Death Report"]]
##-- Check duplicated cases
idx <- unique(x$SubjectID)
# dup <- sapply(idx, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "subject"
#table(dup)
# wi <- idx[dup]
### ALL THESE DUPLICATED SUBJECTS HAVE THE SAME INFORMATION IN DIFFERENT ROWS
##-- Save the complete dataset
RALScomp[["Death Report"]] <- x
##-- Eliminate duplicated cases
x <- subset(x, !duplicated(SubjectID))
##-- Check duplicated cases
# dup <- sapply(id, function(i) any(duplicated(subset(x, SubjectID == i)$SubjectID))) # identify duplicated cases by "subject"
##-- Save the cleaned data
RALSclean[["Death Report"]] <- x
cat("first part done, three to go\n")
###############################################################################
############## CleanupLabs_finalHS: cleaning up the laboratory data
###############################################################################
#--- 2.3 - Clean up Labs -------------------------------------------------------------------------------#
u <- RALSclean[["ALSFRS(R)"]]
id <- unique(u$SubjectID)
x <- RALS[["Laboratory Data"]]
##-- Clean up substances' labels
### actually Urine Urea and Blood Urea Nitrogen (BUN) are the same
x$V_1250MOD <- x$V_1250
x$V_1250MOD[x$V_1250MOD == "Urine Urea"] <- "Blood Urea Nitrogen (BUN)"
#str(x)
x$V_1250MOD <- factor(x$V_1250MOD)
#str(x)
##-- Identify substances with at least 40% of the information
a <- xtabs(~ SubjectID + V_1250MOD, data = x)
p <- colMeans(a > 0) ### % subjects with at least one measurement
#p <- colSums(a > 0)
### substances with at least 40% of the subjects having at least one measurement
tselect <- names(p)[p > .4]
##-- Clean up numeric values
### clean up numeric values
### <FIXME> ignore censoring for the time being </FIXME>
## Verify the presence of ","
wi <- grep(",", x$V_1251)
x$V_1251MOD <- gsub(",", "", x$V_1251)
x$V_1251MOD <- as.factor(x$V_1251MOD)
## Verify the presence of "<"
wi <- grep("[<]", x$V_1251)
x$V_1251MOD[x$V_1250=="Bilirubin (Total)" & x$V_1251=="<0.2"] <- NA
x$V_1251MOD <- as.factor(x$V_1251MOD)
#str(x)
x$V_1251MOD <- x$V_1251MOD[, drop = TRUE]
##-- Delete rows with missing values in V_1251
x <- subset(x, !is.na(V_1251MOD))
suppressWarnings(x$V_1251NUM <- as.numeric(as.character(x$V_1251)))
#x$V_1251NUM <- as.numeric(levels(x$V_1251MOD))[x$V_1251MOD]
#str(x)
x$V_1251FAC <- x$V_1251MOD
x$V_1251FAC[!is.na(x$V_1251NUM)] <- NA
x$V_1251FAC <- as.factor(x$V_1251FAC)
#str(x)
x$V_1251FAC <- x$V_1251FAC[, drop = TRUE]
## Verify the presence of "-" for the last subject identified
s <- subset(x, V_1251NUM==V_1251NUM[wi[1]])
for (i in 2:length(wi)){
s <- rbind(s,subset(x, V_1251NUM==V_1251NUM[wi[i]]))
}
##-- Clean up units
x$V_1252MOD <- tolower(x$V_1252)
x$V_1252MOD[x$V_1252MOD == "x10e12/l"] <- "10e12/l"
x$V_1252MOD <- factor(tolower(x$V_1252MOD))
##-- Explore and clean up the substances selected
## ---- "ABSOLUTE BASOPHIL COUNT"
x$V_1252MOD[which(x$V_1250MOD == "Absolute Basophil Count" & x$V_1252MOD == "10e12/l")] <- "10e9/l"
## ---- "ALBUMIN"
x$V_1252MOD[which(x$V_1250MOD == "Albumin" & x$V_1252MOD == "%")] <- "g/l"
### Solution: THE CASES WERE DIVIDED BY 1000
x$V_1251num <- with(x, ifelse(V_1250MOD == "Platelets" & V_1251NUM > 100000, V_1251NUM/1000, V_1251NUM))
x$V_1252MOD[which(x$V_1250MOD == "Platelets" & x$V_1252MOD == "")] <- "10e9/l"
### Data
s <- subset(x, V_1250MOD== "Red Blood Cells (RBC)")
ids <- unique(s$SubjectID)
### Duplicated cases
d <- subset(s, duplicated(paste(SubjectID, Delta)))
idd <- unique(d$SubjectID)
### There are 1635 duplicated subjects
### Solution: COVERT UNITS TO 10E9/L TO 10E12/L DIVIDING BY 1000
x$V_1251num <- with(x, ifelse(V_1250MOD == "Red Blood Cells (RBC)" & V_1252MOD =="10e9/l" & V_1251NUM > 999 & V_1251NUM < 10000, V_1251num/1000, V_1251num))
### Solution: COVERT UNITS TO 10E9/L TO 10E12/L DIVIDING BY 1000. WOULD BE OK, EVEN WHEN THE VALUES SEEM TO BE HIGH
x$V_1251num <- with(x, ifelse(V_1250MOD == "Red Blood Cells (RBC)" & V_1252MOD =="10e9/l" & V_1251NUM > 9999 & V_1251NUM < 100000, V_1251num/1000, V_1251num))
### Solution: COVERT VALUES DIVIDING BY 1000000
x$V_1251num <- with(x, ifelse(V_1250MOD == "Red Blood Cells (RBC)" & V_1252MOD =="10e9/l" & V_1251NUM > 999999 & V_1251NUM < 10000000, V_1251num/1000000, V_1251num))
z <- subset(x, x$V_1250MOD == "Red Blood Cells (RBC)" & x$V_1251NUM > 999999 & x$V_1251NUM < 10000000)
### Cases between 3.33e+09 and 5.76e+09. TOTAL=281
z <- subset(x, x$V_1250MOD == "Red Blood Cells (RBC)" & x$V_1251NUM > 999999999 & x$V_1251NUM < 10000000000)
### Solution: COVERT VALUES DIVIDING BY 1000000000
x$V_1251num <- with(x, ifelse(V_1250MOD == "Red Blood Cells (RBC)" & V_1252MOD =="10e9/l" & V_1251NUM > 999999999 & V_1251NUM < 10000000000, V_1251num/1000000000, V_1251num))
z <- subset(x, x$V_1250MOD == "Red Blood Cells (RBC)" & x$V_1251NUM > 999999999 & x$V_1251NUM < 10000000000)
y <- subset(x, V_1250MOD == "Red Blood Cells (RBC)" & V_1251NUM == 500) # There are 174 subjects with RCB=500
idy <- unique(y$SubjectID)
### Solution: 1. REMOVE RBC=500, EXCEPT THE 3 SUBJECTS WHERE THE VALUE 500 DOES NOT HAVE A DUPLICATED CASE
### 2. DIVIDE THE REMAINING CASES BY 100
### Subtitute 500 by NA
x$V_1251num[which(x$V_1250MOD == "Red Blood Cells (RBC)" & x$V_1251NUM == 500)] <- NA
### Leave value 5 in the exceptional cases (4 cases in total)
idex <- c(445636, 609564, 985781)
for(i in idex){
x$V_1251num <- with(x, ifelse(V_1250MOD == "Red Blood Cells (RBC)" & V_1251NUM == 500 & SubjectID==i, 5, V_1251num))
}
#### Solution: CHANGE THE LABEL OF THE UNITS COLUMN TO 10E12/L. THIS APPLIES TO ALL THE PREVIOUS CHANGES
x$V_1252MOD[which(x$V_1250MOD == "Red Blood Cells (RBC)" & x$V_1252MOD == "10e9/l")] <- "10e12/l"
y <- subset(x, V_1250MOD == "White Blood Cell (WBC)" & V_1252MOD =="10e9/l" & x$V_1251num > 1000)
x$V_1251num <- with(x, ifelse(V_1250MOD == "White Blood Cell (WBC)" & V_1252MOD =="10e9/l" & V_1251num > 1000, V_1251num/1000, V_1251num))
y <- subset(x, V_1250MOD == "White Blood Cell (WBC)" & V_1252MOD =="10e9/l" & x$V_1251NUM > 1000)
x$V_1252MOD[which(x$V_1250MOD == "White Blood Cell (WBC)" & x$V_1252MOD == "")] <- "10e9/l"
### VERY SIMILAR TO THE NUMBER OF DUPLICATED CASES IN RBC
idwbc <- unique(s$SubjectID)
# dup <- sapply(idwbc, function(i) any(duplicated(subset(s, SubjectID == i)$Delta)))
x$V_1252MOD[which(x$V_1250MOD == "Creatine Kinase MB" & x$V_1252MOD == "u/l")] <- "%"
x$V_1252MOD[which(x$V_1250MOD == "Creatine Kinase MM" & x$V_1252MOD == "u/l")] <- "%"
x$V_1252MOD[which(x$V_1250MOD == "Mean Corpuscular Hemoglobin" & x$V_1252MOD == "pg")] <- "pg/cell"
x$V_1252MOD[which(x$V_1250MOD == "Prothrombin Time (clotting)" & x$V_1252MOD == "%")] <- "seconds"
x$V_1252MOD[which(x$V_1250MOD == "Urine Granular Cast" & x$V_1252MOD == "")] <- "/hpf"
RALScomp[["Laboratory Data"]] <- x
##-- Eliminate rows without Delta
### no time information
x <- subset(x, !is.na(Delta))
##-- Eliminate rows without Test Result (THESE ROWS ARE THOSE WHERE RBC=500 WERE REMOVED)
x <- subset(x, !(is.na(V_1251num) & is.na(V_1251FAC)))
##-- Eliminate duplicated cases
### only subjects with ALS scores
x <- subset(x, SubjectID %in% id)
##-- Obtain one table per substance
idtest <- unique(x$V_1250)
idtestMOD <- unique(x$V_1250MOD)
### one table per substance
tests <- as.character(unique(x$V_1250MOD[, drop = TRUE]))
lab <- vector(mode = "list", length = length(tests))
names(lab) <- tests
#str(lab)
for (tt in tests) {
tmp <- subset(x, V_1250MOD == tt)
tmp$V_1252MOD <- tmp$V_1252MOD[, drop = TRUE]
unit <- tmp$V_1252MOD
# if (length(unique(unit)) > 1)
# cat(tt, "units: ", unique(as.character(unit)), "\n")
### <FIXME> remove duplicates here? </FIXME>
### merge at the end will explode...
i <- with(tmp, paste(SubjectID, Delta, sep = "_"))
tmp <- tmp[!duplicated(i),]
### produce valid variable names
tname <- gsub(" ", "_", tt)
tname <- gsub("-", "_", tname)
tname <- gsub("\\(", "", tname)
tname <- gsub("\\)", "", tname)
# if (tt %in% tselect) {
names(tmp)[names(tmp) == "V_1251num"] <- paste("Value", tname, sep = "_")
names(tmp)[names(tmp) == "V_1251FAC"] <- paste("Category", tname, sep = "_")
names(tmp)[names(tmp) == "V_1252MOD"] <- paste("Unit", tname, sep = "_")
# } else {
# tmp$V_1251 <- TRUE
# names(tmp)[names(tmp) == "V_1251"] <- paste(tname, "DONE", sep = "")
# }
tmp$V_1250 <- tmp$V_1250MOD <- NULL
tmp$V_1251 <- tmp$V_1251MOD <- tmp$V_1251NUM <- NULL
tmp$V_1252 <- NULL
tmp$FormID <- NULL
lab[[tt]] <- tmp
}
lab <- lab[sapply(lab, function(x) length(unique(x$SubjectID)) > 100)]
##-- Merge data for substances with more than 100 measurements
### merge laboratory data into one data.frame
### but only for substances with > 100 measurements
ind <- which(sapply(lab, nrow) > 100)
x <- lab[[ind[1]]]
for (i in ind[-1]) {
x <- merge(x, lab[[i]], by = c("SubjectID", "Delta"), all = TRUE)
}
idx <- unique(x$SubjectID)
##-- Save the cleaned data
## save raw lab data
RALSclean[["Raw Laboratory Data"]] <- lab
## save lab data
RALSclean[["Laboratory Data"]] <- x
cat("second part done, two to go\n")
###################################################################
#################### descr_data: finalizing data (right scale etc)
###################################################################
library("plyr")
## ----Overview------------------------------------------------------------
names(RALSclean) <- gsub(" ", "_", names(RALSclean))
names(RALSclean)[names(RALSclean) == "ALSFRS(R)"] <- "ALSFRS_R"
# RALSclean$Raw_Laboratory_Data <- NULL
RALSclean$Riluzole_use$SubjectID <- as.numeric(as.character(RALSclean$Riluzole_use$SubjectID))
RALSclean$Death_Report$SubjectID <- as.numeric(as.character(RALSclean$Death_Report$SubjectID))
## ----Treatment-----------------------------------------------------------
RALSclean$Riluzole_use$V_1461 <- factor(RALSclean$Riluzole_use$V_1461)
## ----Death_Report--------------------------------------------------------
RALSclean$Death_Report$V_1465 <- factor(RALSclean$Death_Report$V_1465)
### find maximum Delta in datasets and include it as censored observation
### for patients without observed survival time
### use RALScomp for this (more information)
deltanumeric <- function(x) {
if(is.factor(x$Delta))
x$Delta <- as.numeric(as.character(x$Delta))
return(x)
}
RALScomp <- llply(RALScomp, deltanumeric)
RALSclean <- llply(RALSclean, deltanumeric)
getmaxdelta <- function(a) {
if(is.null(a$Delta) || is.na(a$Delta)) NA else max(a$Delta, na.rm = TRUE)
}
deltas <- ldply(RALScomp, function(x) {
ddply(x, .(SubjectID), getmaxdelta)
})
names(deltas)[names(deltas) == "V1"] <- "Delta"
max.deltas <- ddply(deltas, .(SubjectID), function(a)
if(is.null(a$Delta)) data.frame(set = NA, maxDelta = NaN) else {
maxD <- max(a$Delta, na.rm = TRUE)
maxD.id <- which.max(a$Delta)
data.frame(set = a$.id[maxD.id], maxDelta = maxD)
}
)
# summary(max.deltas)
dr <- merge(RALSclean$Death_Report, max.deltas, by = "SubjectID", all = TRUE)
dr$V_1465[is.na(dr$V_1465)] <- "No"
dr$V_1466[dr$V_1465 == "No"] <- dr$maxDelta[dr$V_1465 == "No"]
## check logic
(str.surv <- dr[which(dr$V_1466 < dr$maxDelta), ])
RALSclean$Death_Report <- dr
cat("third part done, one to go\n")
###################################################################
#################### ALS_data_management.R
###################################################################
library("dplyr")
datl <- RALSclean
#######-------------- Basis Data Set ---------------------------------------
##'should contain:
##' t.onsettrt: time between ALS onset and treatment start
##' V_i.Start: ALS score i at treatment start
##' V_i.halfYearAfter: ALS score six month after treatment start
#######-------------- ALSFRS ---------------------------------------
als <- datl$ALSFRS_R
scorevars <- paste0("V_", c(1213:1223, 1230:1232))
## delete .5 values (they are imputated)
is.integernumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
p5toNA <- function(x) {
x[!is.integernumber(x)] <- NA
x
}
als[ ,scorevars] <- als[ ,scorevars] %>% mutate_each(funs(p5toNA)) %>% mutate_each(funs(as.ordered))
## make one variable out of V_1218 and V_1219
als$V_121.8.9 <- als$V_1218
als$V_121.8.9[is.na(als$V_121.8.9)] <- als$V_1219[is.na(als$V_121.8.9)]
datl$ALSFRS_R <- als
### Get (unique) Diagnosis and Onset Delta for each Patient
### Needed because of multiple rows for patients in history data set
histr <- datl$Subject_ALS_History
#plot(table(histr$SubjectID))
names(table(histr$SubjectID)[table(histr$SubjectID) == 4])
histr <- subset(histr, select = c(SubjectID, V_1418, V_1417))
histr <- unique(histr)
bothvNA <- is.na(histr$V_1418) & is.na(histr$V_1417)
histr <- histr[!bothvNA, ]
length(unique(histr$SubjectID))
#### Scores, Diagnosis Delta and Treatment needed
dat.diagtrt <- merge(histr, datl$Riluzole_use, by = "SubjectID", all = TRUE)
dat.diagtrt <- subset(dat.diagtrt, select = c(SubjectID, V_1418, V_1417, Delta, V_1461))
names(dat.diagtrt)[grep("_", names(dat.diagtrt))] <- c("DiagnosisDelta", "OnsetDelta", "Riluzole")
names(dat.diagtrt)[names(dat.diagtrt) == "Delta"] <- "RiluzoleDelta"
dat.diagtrt$DiagnosisDelta <- as.numeric(as.character(dat.diagtrt$DiagnosisDelta))
dat.diagtrt$OnsetDelta <- as.numeric(as.character(dat.diagtrt$OnsetDelta))
dat.diagtrt$t.diagtrt <- dat.diagtrt$RiluzoleDelta - dat.diagtrt$DiagnosisDelta
dat.diagtrt$t.onsettrt <- dat.diagtrt$RiluzoleDelta - dat.diagtrt$OnsetDelta
#### merge Delta-Dataset with ALS Scores
dat <- merge(dat.diagtrt, datl$ALSFRS_R, by = "SubjectID")
#### Find ALS Score of Treatment start and 6 months later (approximately; 20 days +- is okay)
## 6 months after Treatment start
dat$halfYearAfter <- dat$RiluzoleDelta + 183
get.bestFitToTime <- function(x, time = "halfYearAfter") {
# compute absolute differences
diffs <- abs(x$Delta - x[ , time])
# only look, if there are non-missing values and differences smaller than 20 days
if((sum(!is.na(diffs)) > 0) && (min(diffs, na.rm = TRUE) < 20)){
# look for the smallest difference and return row
min.diff <- which.min(diffs)
x[min.diff, ]
} else NULL
}
dat.halfYearAfter <- ddply(dat, .(SubjectID), get.bestFitToTime)
## Day of treatment Start
dat.Start <- ddply(dat, .(SubjectID), get.bestFitToTime, time = "RiluzoleDelta")
#### data set with ALS Info of the Patient at treatment start and 6 months later
data <- merge(dat.Start, dat.halfYearAfter, all = TRUE, by = names(dat.diagtrt))
names(data) <- gsub(".x", ".Start", names(data))
names(data) <- gsub(".y", ".halfYearAfter", names(data))
del <- c("FormID", "Mode of Administration", "ALSFRS Responded",
"V_121819", "V_121430", "halfYearAfter.",
"DiagnosisDelta", "OnsetDelta", "Delta.")
delind <- grepl(paste0(del, collapse = "|"), names(data))
data <- data[ , !(delind)]
#######-------------- Demographics ---------------------------------------
demog <- datl$Demographics[ , c("SubjectID", "Race", "Sex", "Age", "Height")]
data <- merge(data, demog, by = "SubjectID", all = TRUE)
#######-------------- Medical History ---------------------------------------
med <- datl$Medical_History
med$Onset <- NULL
data <- merge(data, med, by = "SubjectID", all = TRUE)
#######-------------- Family History ---------------------------------------
fam <- datl$Family_History
### are there cases in an older generation, the same generation or a younger generation
older <- paste0("V_", c(1288, 1289, 1290, 1294, 1295, 1296, 1297,
1298, 1299, 1300, 1301, 1311, 1312, 1313))
same <- paste0("V_", c(1291:1293, 1309, 1426, 1427))
younger <- paste0("V_", c(1302, 1305, 1424, 1425))
are.cases <- function(fam, members) {
res <- as.numeric(rowSums(fam[ , names(fam) %in% members], na.rm = TRUE) > 0)
factor(res, labels = c("no", "yes"))
}
fam$fam.hist.older <- are.cases(fam, older)
fam$fam.hist.same <- are.cases(fam, same)
fam$fam.hist.younger <- are.cases(fam, younger)
fam <- subset(fam, select = c(SubjectID, fam.hist.older, fam.hist.same, fam.hist.younger, V_1419modl)) ##! V_1419 concerns the patient
names(fam)[names(fam) == "V_1419modl"] <- "NeurologicalDisease"
data <- merge(data, fam, by = "SubjectID", all = TRUE)
#######-------------- Vital Signs ---------------------------------------
vit <- datl$Vital_Signs
dlt <- data[ , c("SubjectID", "RiluzoleDelta")]
vit <- merge(vit, dlt, by = "SubjectID", all = TRUE)
vit <- ddply(vit, .(SubjectID), get.bestFitToTime, time = "RiluzoleDelta")
vit <- subset(vit, select = c(SubjectID, temperature, V_1170NUM, V_1169NUM, weight))
names(vit)[names(vit) %in% c("V_1170NUM", "V_1169NUM")] <- c("BP_diastolic", "BP_systolic")
data <- merge(data, vit, by = "SubjectID", all = TRUE)
#######-------------- Treatment Group ---------------------------------------
trt <- subset(datl$Treatment_Group, select = -FormID)
names(trt)[names(trt) == "V_1454"] <- "treatment.group"
names(trt)[names(trt) == "Delta"] <- "treatment.group.Delta"
data <- merge(data, trt, by = "SubjectID", all = TRUE)
#######-------------- SVC ---------------------------------------
svc <- subset(datl$Slow_Vital_Capacity, select = c(SubjectID, Delta, V_1262))
svc <- merge(svc, dlt, by = "SubjectID", all.x = TRUE)
svc <- ddply(svc, .(SubjectID), get.bestFitToTime, time = "RiluzoleDelta")
svc$RiluzoleDelta <- NULL
names(svc)[names(svc) %in% c("V_1262")] <- c("SubjectLiters_svc")
svc$Delta <- NULL
data <- merge(data, svc, by = "SubjectID", all = TRUE)
#######-------------- FVC ---------------------------------------
fvc <- subset(datl$Forced_Vital_Capacity, select = c(SubjectID, Delta, V_1185NUM, V_1188MOD))
fvc <- merge(fvc, dlt, by = "SubjectID", all.x = TRUE)
fvc <- ddply(fvc, .(SubjectID), get.bestFitToTime, time = "RiluzoleDelta")
fvc$RiluzoleDelta <- NULL
names(fvc)[names(fvc) %in% c( "V_1185NUM", "V_1188MOD")] <- c("SubjectLiters_fvc", "SubjectNormal_fvc")
fvc$Delta <- NULL
data <- merge(data, fvc, by = "SubjectID", all = TRUE)
#######-------------- Laboratory Data ---------------------------------------
lab <- datl$Laboratory_Data
# colSums(is.na(lab))
del <- grep("Unit|Category", names(lab))
lab <- lab[,-del]
lab <- merge(lab, dlt, by = "SubjectID", all.x = TRUE)
lab <- ddply(lab, .(SubjectID), get.bestFitToTime, time = "RiluzoleDelta")
lab$RiluzoleDelta <- NULL
lab$Delta <- NULL
data <- merge(data, lab, by = "SubjectID", all = TRUE)
#######-------------- Death report ---------------------------------------
surv <- subset(datl$Death_Report, select = -c(FormID, set, maxDelta))
head(surv, 30)
names(surv) <- c("SubjectID", "cens", "survival.time")
surv$cens <- as.numeric(surv$cens == "Yes")
data <- merge(data, surv, by = "SubjectID", all.x = TRUE)
### delete observations with survival < Delta
dr <- datl$Death_Report
dr <- dr[(dr$V_1466 < dr$maxDelta) & !is.na(dr$V_1466), ]
drid <- dr$SubjectID
data <- data[!(data$SubjectID %in% drid), ]
### checking all variables for right scale (numeric, factor)
facs <- sapply(data, is.factor)
data$Age <- as.numeric(as.character(data$Age))
data$temperature <- as.numeric(as.character(data$temperature))
data$ALSFRS.Start <- as.numeric(as.character(data$ALSFRS.Start))
data$ALSFRS.halfYearAfter <- as.numeric(as.character(data$ALSFRS.halfYearAfter))
setwd(wdbase)
save(data, file = paste0(outfolder, "RALSfinal.rda"))
save(RALSclean, file = paste0(outfolder, "RALSfinal_list.rda"))
cat(paste("\n
Your data files are called RALSfinal.rda and RALSfinal_list.rda.
Read them into R using function read().\n"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.