R/vca.R

Defines functions residuals.VCA print.VCAinference VCAinference print.VCA vcovVC getDDFM vcov.VCA coef.VCA solveMME Solve reScale fitVCA predict.VCA fitLMM .onUnload .onLoad

Documented in coef.VCA fitLMM fitVCA getDDFM predict.VCA print.VCA print.VCAinference reScale residuals.VCA Solve solveMME VCAinference vcovVC vcov.VCA

# Load/unload C-lib.

.onLoad <- function(lib, pkg)
{
	#library.dynam(chname="VCA", package=pkg, lib.loc=lib)
	# create VCA message environment
	msgEnv <<- new.env(parent=emptyenv())
	check4MKL()
}

.onUnload <- function(lib)
{
	#library.dynam.unload(chname="VCA", libpath=lib)
}	


# TODO: Add comment
# 
# Author: schueta6
###############################################################################


# TODO: Add comment
# 
# Author: schueta6
###############################################################################




#'Fit Linear Mixed Model by ANOVA or REML
#'
#'Function serves as interface to functions \code{\link{anovaMM}} and \code{\link{remlMM}}
#'for fitting a linear mixed model (LMM) either by ANOVA or REML. All arguments applicable
#'to either one of these functions can be specified (see \code{\link{anovaMM}} or \code{\link{remlMM}} for details).
#'
#'Besides offering a convenient interface to both functions for fitting a LMM, this function also provides all elements
#'required for standard task of fitted models, e.g. prediction, testing general linear hypotheses via R-package \code{multcomp},
#'etc. (see examples).
#'
#'@param form		(formula) specifiying the linear mixed model, random effects need to be identified by enclosing
#'them in round brackets, i.e. ~a/(b) will model factor 'a' as fixed and 'b' as random
#'@param Data		(data.frame)  containing all variables referenced in 'form', note that variables can only be of type
#'"numeric", "factor" or "character". The latter will be automatically converted to "factor"
#'@param method	(character) either "anova" to use ANOVA Type-I estimation of variance components or "reml" to use 
#'restricted maximum likelihood (REML) estimation of variance component		
#'@param scale		(logical) TRUE = scale values of the response aiming to avoid numerical problems
#'when numbers are either very small or very large, FALSE = use original scale
#'@param VarVC		(logical) TRUE = variance-covariance matrix of variance components will be computed, FALSE = it will not
#'be computed
#'@param ...		additional arguments to be passed to function \code{\link{anovaMM}} or function \code{\link{remlMM}}.
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@seealso \code{\link{fitVCA}}, \code{\link{anovaMM}}, \code{\link{remlMM}}
#'
#'@examples
#'\dontrun{
#'data(dataEP05A2_2)
#'
#'# assuming 'day' as fixed, 'run' as random
#'# Note: default method is "anova"
#'fitLMM(y~day/(run), dataEP05A2_2)
#'
#'# explicitly request "reml"
#'fitLMM(y~day/(run), dataEP05A2_2, method="reml")
#'
#'# assuming both as random leads to same results as
#'# calling anovaVCA (ANOVA is the default)
#'fitLMM(y~(day)/(run), dataEP05A2_2)
#'anovaVCA(y~day/run, dataEP05A2_2)
#'
#'# now using REML-estimation
#'fitLMM(y~(day)/(run), dataEP05A2_2, "reml")
#'remlVCA(y~day/run, dataEP05A2_2)
#'
#'# use different approaches to estimating the covariance of 
#'# variance components (covariance parameters)
#'# create unbalanced data
#'dat.ub <- dataEP05A2_2[-c(11,12,23,32,40,41,42),]
#'m1.ub <- fitLMM(y~day/(run), dat.ub, VarVC.method="scm")
#'# VarVC.method="gb" is an approximation not relying on quadratic forms
#'m2.ub <- fitLMM(y~day/(run), dat.ub, VarVC.method="gb")		
#'# REML-estimated variance components usually differ from ANOVA-estimates
#'# and so do the variance-covariance matrices
#'m3.ub <- fitLMM(y~day/(run), dat.ub, "reml", VarVC=TRUE)		
#'V1.ub <- round(vcovVC(m1.ub), 12)
#'V2.ub <- round(vcovVC(m2.ub), 12)
#'V3.ub <- round(vcovVC(m3.ub), 12)
#'
#'# fit a larger random model
#'data(VCAdata1)
#'fitMM1 <- fitLMM(y~((lot)+(device))/(day)/(run), VCAdata1[VCAdata1$sample==1,])
#'fitMM1
#'# now use function tailored for random models
#'fitRM1 <- anovaVCA(y~(lot+device)/day/run, VCAdata1[VCAdata1$sample==1,])
#'fitRM1
#'
#'# there are only 3 lots, take 'lot' as fixed 
#'fitMM2 <- fitLMM(y~(lot+(device))/(day)/(run), VCAdata1[VCAdata1$sample==2,])
#'# use REML on this (balanced) data
#'fitMM2.2 <- fitLMM(y~(lot+(device))/(day)/(run), VCAdata1[VCAdata1$sample==2,], "reml")
#'
#'# the following model definition is equivalent to the one above,
#'# since a single random term in an interaction makes the interaction
#'# random (see the 3rd reference for details on this topic)
#'fitMM3 <- fitLMM(y~(lot+(device))/day/run, VCAdata1[VCAdata1$sample==2,])
#'
#'# fit same model for each sample using by-processing
#'lst <- fitLMM(y~(lot+(device))/day/run, VCAdata1, by="sample")
#'lst
#'
#'# fit mixed model originally from 'nlme' package
#'
#'library(nlme)
#'data(Orthodont)
#'fit.lme <- lme(distance~Sex*I(age-11), random=~I(age-11)|Subject, Orthodont) 
#'
#'# re-organize data
#'Ortho <- Orthodont
#'Ortho$age2 <- Ortho$age - 11
#'Ortho$Subject <- factor(as.character(Ortho$Subject))
#'fit.anovaMM1 <- fitLMM(distance~Sex*age2+(Subject)*age2, Ortho)
#'
#'# use simplified formula avoiding unnecessary terms
#'fit.anovaMM2 <- fitLMM(distance~Sex+Sex:age2+(Subject)+(Subject):age2, Ortho)
#'
#'# and exclude intercept
#'fit.anovaMM3 <- fitLMM(distance~Sex+Sex:age2+(Subject)+(Subject):age2-1, Ortho)
#'
#'# compare results
#'fit.lme
#'fit.anovaMM1
#'fit.anovaMM2
#'fit.anovaMM3
#'
#'# are there a sex-specific differences?
#'cmat <- getL(fit.anovaMM3, c("SexMale-SexFemale", "SexMale:age2-SexFemale:age2")) 
#'cmat
#'
#'test.fixef(fit.anovaMM3, L=cmat)
#'
#'# fit LMM with fixed lot and device effects and test for lot-differences
#'data(VCAdata1)
#'fitS5 <- fitLMM(y~(lot+device)/(day)/(run), subset(VCAdata1, sample==5), "reml")
#'fitS5
#'
#'# apply Tukey-HSD test to screen for lot differences
#'library(multcomp)
#'res.tuk <- glht(fitS5, linfct=mcp(lot="Tukey"))
#'summary(res.tuk)
#'
#'# compact letter display
#'res.tuk.cld <- cld(res.tuk, col=paste0("gray", c(90,60,75)))
#'plot(res.tuk.cld)
#'}

fitLMM <- function(	form, Data, method=c("anova", "reml"), scale=TRUE, VarVC=TRUE, ...)
{
	call 	<- match.call()
	method	<- match.arg(tolower(method[1]), choices=c("anova", "reml"))
	Args	<- list(...)
	
	Args$form  <- form
	Args$Data  <- Data
	
	if(scale)
	{
		if(method=="anova")
			Args$Fun  <- "anovaMM"			
		else
		{
			Args$Fun  	<- "remlMM"
			Args$VarVC 	<- VarVC
		}
		fit <- do.call("Scale", Args)
	}
	else
	{
		if(method=="anova")
			fit <- do.call("anovaMM", Args)
		else
		{
			Args$VarVC 	<- VarVC
			fit 		<- do.call("remlMM", Args)
		}
	}
	
	wasVCA <- FALSE								# record that result was VCA-object
	
	if(is(fit, "VCA"))						# if by-processing was not used 			
	{
		fit <- list(fit)
		wasVCA <- TRUE
	}
	
	for(i in 1:length(fit))								# over each list-element
	{
		if(scale)
			fit[[i]] <- reScale(fit[[i]], VarVC=VarVC)	# first re-scale
		
		fit[[i]]$call 			<- call											# prevent non-informative object-name, e.g. "form"
		fe 						<- fixef(fit[[i]])
		X  						<- getMat(fit[[i]], "X")		
		fit[[i]]$fitted.values	<- as.numeric(as.matrix(X) %*% fe[,"Estimate", drop=F])
		fixed 					<- fit[[i]]$fixed[!grepl(":", fit[[i]]$fixed)]	# no interactions
		fixed					<- sapply(fit[[i]]$data[,fixed,drop=F], class)
		fixed					<- names(fixed[which(fixed != "numeric")])
		fit[[i]]$xlevels 		<- lapply(fixed, function(x) as.character(unique(fit[[i]]$data[,x])))
		names(fit[[i]]$xlevels) <- fixed
		
		attr(fit[[i]]$Type, "fitted.by") <- "fitLMM"	# only LMM fitted by 'fitLMM' can be handled in standard ways
	}
	
	if(wasVCA)								
		fit <- fit[[1]]
	
	fit
}






#'Predictions from a Model Fitted by \code{fitLMM}
#'
#'Model returns fitted values in case \code{newdata} is NULL or evaluates
#'the fitted model employing user-specified data \code{newdata}. The default is that
#'fitted values incorporate fixed effects and random effects, leaving out the (conditional)
#'residuals only. If the interest lies in constraining predictions to the fixed effects only
#'set \code{re=NA} or incorporate just part of the random variability specifying distinct random
#'effects (see \code{re}.
#'
#'@param object			(VCA) object fitted via function \code{\link{fitLMM}}
#'@param newdata			(data.frame) with all variables required for the specified prediction,
#'i.e. the default settings require all variables of the original model, 
#'in case of \code{re=NA}, only variables corresponding to fixed effects are
#'required.
#'@param re				(character) if NULL (default) all random effects will be included, 
#'to restrict predictions to the fixed effects use \code{re=NA}, for
#'a subset of random effects included in predictions use any valid
#'random effects specification, i.e. \code{object$random}
#'@param allow.new.levels	(logical) if new levels (no part of the original fitted model) in newdata
#'are allowed. If FALSE (default), such new values in newdata will trigger
#'an error; if TRUE, then the prediction will use the unconditional (population-level)
#'values for data with previously unobserved levels (or NAs).
#'@param ...				additional arguments passdo or from other methods
#'
#'@return (numeric) vector of prediction results
#'@method predict VCA
#'@author Andre Schuetzenmeister \email{andre.schuetzeneister@@roche.com}
#'
#'@examples 
#'\dontrun{
#'# fit LMM with fixed lot and device effects and test for lot-differences
#'data(VCAdata1)
#'datS5 <- subset(VCAdata1, sample==5)
#'fitS5 <- fitLMM(y~(lot+device)/(day)/(run), datS5, "anova")
#'fitS5
#'
#'# fitted values including fixed and random effects
#'pred0 <- predict(fitS5)
#'pred0
#'# sanity check:
#'all(round(pred0 + resid(fitS5) - datS5$y, 12) == 0)
#'# restrict to fixed effects
#'predict(fitS5, re=NA)
#'# restrict to fixed effects and dayly random effects
#'# see required names
#'fitS5$random
#'predict(fitS5, re="lot:device:day")
#'
#'# check against original 'lmer'-predictions
#'# use version from VCA-package (ordinary data.frame)
#'data(Orthodont, package="VCA")
#'Ortho <- Orthodont
#'Ortho$age2 <- Ortho$age-11
#'# use exactly the same data, same ordering
#'Ortho <- orderData(Ortho, distance ~ Sex * age2 + (Subject) * age2)
#'fit.fitLMM <- fitLMM(distance ~ Sex * age2 + (Subject) * age2, Ortho, "reml")
#'library(lme4)
#'fit.lmer <- lmer(distance ~ Sex + age2 + Sex:age2 + (age2 | Subject), Ortho)
#'# check fitted value first (fixed + random effects)
#'predict(fit.lmer)
#'predict(fit.fitLMM)
#'# restrict to fixed part only
#'predict(fit.lmer, re.form=NA)  
#'predict(fit.fitLMM, re=NA)
#'# user-specified 'newdata'
#'newdata <- Ortho[45:54,]
#'newdata$age2 <- newdata$age2 + 5
#'# include fixed and random effects
#'predict(fit.lmer, newdata)
#'predict(fit.fitLMM, newdata)
#'# generate new data
#'newdata <- Ortho[45:54,]          
#'newdata$age2 <- newdata$age2 + 5
#'# predict on newdata using fixed and random effects
#'predict(fit.lmer, newdata) 
#'predict(fit.fitLMM, newdata)       
#'# restrict prediction to random Subject effects
#'predict(fit.lmer, newdata, re.form=~(1|Subject))        
#'predict(fit.fitLMM, newdata, re="Subject")
#'# restrict prediction to random per-Subject slope
#'predict(fit.lmer, newdata, re.form=~(age2-1|Subject)) 
#'predict(fit.fitLMM, newdata, re="age2:Subject")
#'}

predict.VCA <- function(object, newdata=NULL, re=NULL, allow.new.levels=FALSE, ...)
{
	if(is.null(re))								# all random effects per default
	{
		re <- object$random
		if(is.null(re))							# VCA-model
		{
			if(object$EstMethod == "REML")
				re <- object$VCnames
			else
				re <- object$VCnames[-length(object$VCnames)]
		}
	}
	else
	{
		if(!is.na(re[1]) && !all(re %in% object$random))
			stop("You can only specify random effects in 're' which are available in 'object$random'!")
	}
	
	user.nd <- FALSE							# indicate that no user-defined newdata was specified (default)
	
	if(!is.na(re[1]) && !is.null(newdata))		# all variables found in 're' in 'newdata'?
	{
		re.trms <-  unique(unlist(strsplit(object$random, ":")))
		cnd		<- colnames(newdata)
		if(any(!re.trms %in% cnd))
			stop(paste0("Variable(s): ", paste(re.trms[which(!re.trms %in% cnd)], collapse=", "), " are missing in 'newdata'!"))
	}
	
	if(is.null(attr(object$Type, "fitted.by")))
	{
		warning("Predictions can only be made on models fitted by function 'fitLMM' or 'fitVCA'!")
		return()
	}
	trms  	<- object$fixed.terms
	
	### fixed part first	
	if(is.null(newdata))
	{
		X <- getMat(object, "X")				# get design matrix of fixed effects
		newdata <- object$data	
	}
	else
	{
		user.nd <- TRUE							# indicate user-defined newdata
		Terms	<- delete.response(trms)
		mf 		<- model.frame(Terms, newdata, xlev=object$xlevels)	
		cntr    <- as.list(rep("contr.SAS", length(object$xlevels)))	# use SAS-type contrasts, i.e. last level will be constrained 
		names(cntr) <- names(object$xlevels)
		X		<- model.matrix(Terms, mf, contrasts.arg=cntr)
		asgn	<- attr(X, "assign")
		asgn0	<- object$fe.assign
		tdiff	<- table(asgn0) - table(asgn)	# missing columns in X?
		
		if(any(tdiff == 0))
		{
			X0  <- matrix(0, nrow=nrow(X), ncol=length(asgn0))		# pre-allocate matrix of right dimension
			ind <- match(asgn, asgn0) 								# add all-zero columns to match vector of fixed effects
			for(i in unique(ind))
			{
				tmp <- which(ind == i)
				if(length(tmp) > 1)
					ind[tmp] <- ind[tmp] + 0:(length(tmp)-1)
			}
			X0[,ind] <- X
			X <- X0
		}
	}
	fe 		<- fixef(object, quiet=TRUE)
	preds	<- as.numeric(as.matrix(X) %*% fe[,"Estimate", drop=F])
	
	### add random part to predictions
	if(!is.na(re[1]))
	{
		#Z 	<- getMat(object, "Z")
		ref <- ranef(object, quiet=TRUE)						# at this point all random effects would be used
		
		# generate names for random effects from 'newdata' accounting for user-specified 'newdata' 
		#fac   <- na.omit(names(object$terms.classes[re]))		# only these will get names like VarnameVarlevel 
		rtrms <- re
		#renam <- NULL		
		Z	  <- matrix(nrow=nrow(newdata), ncol=0)
		
		for(i in 1:length(rtrms))						# over all random terms
		{
			tmpZ <- getMM(as.formula(paste0("~", rtrms[i], "-1")), newdata) 	# model.matrix wo intercept
			Z  	 <- cbind(Z, tmpZ) 												# build complete Z-matrix corresponding to newdata
		}	

		ref <- ref[colnames(Z),,drop=F]						# align random effects to column-order of Z
		preds <- preds + as.numeric(Z %*% ref)		
	}	
	names(preds) <- rownames(newdata)
	return(preds)
}





#'Fit Variance Component Model by ANOVA or REML
#'
#'Function serves as interface to functions \code{\link{anovaVCA}} and \code{\link{remlVCA}}
#'for fitting a variance component models (random models) either by ANOVA or REML. All arguments applicable
#'to either one of these functions can be specified (see \code{\link{anovaVCA}} or \code{\link{remlVCA}} for details).
#'
#'@param form		(formula) specifiying the variance component model (see \code{\link{anovaVCA}} and/or \code{\link{remlVCA}})
#'@param Data		(data.frame)  containing all variables referenced in 'form'
#'@param method	(character) either "anova" to use ANOVA Type-I estimation of variance components or "reml" to use 
#'restricted maximum likelihood (REML) estimation of variance component		
#'@param scale		(logical) TRUE = scale values of the response aiming to avoid numerical problems
#'when numbers are either very small or very large, FALSE = use original scale
#'@param VarVC		(logical) TRUE = variance-covariance matrix of variance components will be computed, FALSE = it will not
#'be computed
#'@param ...		additional arguments to be passed to function \code{\link{anovaVCA}} or function \code{\link{remlVCA}}.
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@seealso \code{\link{fitLMM}}, \code{\link{anovaVCA}}, \code{\link{remlVCA}}
#'
#'@examples
#'\dontrun{
#'#load data (CLSI EP05-A2 Within-Lab Precision Experiment) 
#'data(dataEP05A2_2)
#'
#'# perform ANOVA-estimation of variance components
#'res.anova <- fitVCA(y~day/run, dataEP05A2_2, "anova")
#'# perform REML-estimation of variance components
#'res.reml <- fitVCA(y~day/run, dataEP05A2_2, "reml")
#'
#'# compare scaling vs. not scaling the response
#'fit0 <- fitVCA(y~day/run, dataEP05A2_2, "anova", scale=TRUE)
#'fit1 <- fitVCA(y~day/run, dataEP05A2_2, "anova", scale=FALSE)
#'}

fitVCA <- function(form, Data, method=c("anova", "reml"), scale=TRUE, VarVC=TRUE, ...)
{
	call <- match.call()
	method <- match.arg(tolower(method[1]), choices=c("anova", "reml"))
	
	if(scale)
	{
		if(method=="anova")
			fit <- Scale("anovaVCA", form=form, Data=Data, ...)
		else
			fit <- Scale(remlVCA, form=form, Data=Data, VarVC=VarVC, ...)
	}
	else
	{
		if(method=="anova")
			fit <- anovaVCA(form=form, Data=Data, ...)
		else
			fit <- remlVCA(form=form, Data=Data, VarVC=VarVC, ...)	
	}
	
	wasVCA <- FALSE								# record that result was VCA-object
	
	if(is(fit, "VCA"))						# if by-processing was not used 			
	{
		fit <- list(fit)
		wasVCA <- TRUE
	}
	for(i in 1:length(fit))								# over each list-element
	{
		if(scale)
			fit[[i]] <- reScale(fit[[i]], VarVC=VarVC)				# first re-scale
        
		fit[[i]]$call 			<- call								# prevent non-informative object-name, e.g. "form"
		tmp.fit 				<- fit[[i]]							# fixing an error that first occurred testing with R-4.2.1
		fe 						<- fixef(tmp.fit)#fixef(fit[[i]])
		X  						<- getMat(fit[[i]], "X")		
		fit[[i]]$fitted.values	<- as.numeric(as.matrix(X) %*% fe[,"Estimate", drop=F])
		fixed 					<- fit[[i]]$fixed[!grepl(":", fit[[i]]$fixed)]	# no interactions
		fit[[i]]$xlevels 		<- lapply(fixed, function(x) as.character(unique(fit[[i]]$data[,x])))
		names(fit[[i]]$xlevels) <- fixed
		
		attr(fit[[i]]$Type, "fitted.by") <- "fitVCA"	# only LMM fitted by 'fitLMM' can be handled in standard ways
	}
	
	if(wasVCA)								
		fit <- fit[[1]]
	
	fit
}





#'Re-Scale results of 'VCA' or 'VCAinference' 
#'
#'Function adjusts variance components (VC) and standard deviations (SD) and their respective
#'confidence intervals of 'VCAinference' objects, and the 'VCAobj' sub-element. For 'VCA' objects
#'the VC and SD values are adjusted as well as the fixed and random effects and the covariance-matrix
#'of fixed effects.
#'
#'@param obj		(object) either of class 'VCA' or 'VCAinference'
#'@param VarVC		(logical) TRUE = variance-covariance matrix of the fitted model 'obj'
#'will be computed and automatically re-scaled, FALSE = variance-covariance
#'matrix will not be computed and re-scaled. This might cause wrong results
#'in downstream analyses which require this matrix on the correct scale! Only
#'use this option if computation time really matters!
#'
#'@return (object) either of class 'VCA' or 'VCAinference', where results have been 
#'transformed back to the original scale of the response variable 
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@seealso \code{\link{Scale}}
#'
#'@examples 
#'\dontrun{
#'data(dataEP05A2_3)
#'
#'# reference values
#'fit0 <- anovaVCA(y~day/run, dataEP05A2_3, MME=TRUE)
#'inf0 <- VCAinference(fit0, VarVC=TRUE)
#'
#'fit1 <- Scale("anovaVCA", y~day/run, dataEP05A2_3, MME=TRUE)
#'inf1 <- VCAinference(fit1, VarVC=TRUE)
#'inf1 <- reScale(inf1)
#'
#'# compare to reference
#'print(inf0, what="VC")
#'print(inf1, what="VC")
#'print(inf0, what="SD")
#'print(inf1, what="SD")
#'print(inf0, what="CV")
#'print(inf1, what="CV")
#'
#'# now use REML-based estimation
#'fit0 <- remlVCA(y~day/run, dataEP05A2_3)
#'inf0 <- VCAinference(fit0)
#'
#'fit1 <- Scale("remlVCA", y~day/run, dataEP05A2_3, MME=TRUE)
#'inf1 <- VCAinference(fit1)
#'inf1 <- reScale(inf1)
#'
#'# compare to reference
#'print(inf0, what="VC")
#'print(inf1, what="VC")
#'print(inf0, what="SD")
#'print(inf1, what="SD")
#'print(inf0, what="CV")
#'print(inf1, what="CV")
#'}

reScale <- function(obj, VarVC=TRUE)
{
	if(is.list(obj) && !is(obj, "VCA") && !is(obj, "VCAinference"))
	{		
		if(!all(sapply(obj, class) %in% c("VCA", "VCAinference")))
			stop("Only lists of 'VCA' or 'VCAinference' objects are accepted!")
		
		obj.len <- length(obj)
		
		res <- lapply(obj, FUN=reScale)
		names(res) <- names(obj)
		
		if(obj.len == 1)			# mapply returns a list of length 2 in case that length(obj) was equal to 1
			res <- res[1]
		
		return(res)
	}	
	
	if(!is.null(obj$rescaled))		# re-scaling has already been done on this object
		return(obj)
	
	stopifnot(class(obj) %in% c("VCA", "VCAinference"))
	
	if(is(obj, "VCAinference"))
		VCAobj <- obj$VCAobj
	else
		VCAobj <- obj
	
	scale <- VCAobj$scale	
	
	if(VarVC || VCAobj$EstMethod == "ANOVA")						# estimate covariance-matrix of VCs before any re-scaling takes place
	{
		VCAobj <- solveMME(VCAobj)
		VCAobj$VarCov <- vcovVC(VCAobj)
	}
	
	VCAobj$aov.tab[,"VC"] 		<- VCAobj$aov.tab[,"VC"] * scale^2
	VCAobj$aov.tab[,"SD"] 		<- VCAobj$aov.tab[,"SD"] * scale
	if("Var(VC)" %in% colnames(VCAobj$aov.tab))
		VCAobj$aov.tab[,"Var(VC)"]	<- VCAobj$aov.tab[,"Var(VC)"] * scale^4
	if(VCAobj$EstMethod == "ANOVA")
	{
		VCAobj$aov.tab[,"SS"]	<- VCAobj$aov.tab[,"SS"] * scale^2
		VCAobj$aov.tab[,"MS"]	<- VCAobj$aov.tab[,"MS"] * scale^2
	}
	VCAobj$Mean 				<- VCAobj$Mean * scale
	
	VCAobj$Matrices$y <- VCAobj$Matrices$y * scale
	VCAobj$data[,VCAobj$response] <- VCAobj$data[,VCAobj$response] * scale			# re-scale response variable in the data-element

	if(!is.null(VCAobj$FixedEffects))
		VCAobj$FixedEffects 	<- try(VCAobj$FixedEffects * scale,  silent=TRUE)
	if(!is.null(VCAobj$RandomEffects))
		VCAobj$RandomEffects 	<- try(VCAobj$RandomEffects * scale, silent=TRUE)
	if(!is.null(VCAobj$VarFixed))
		VCAobj$VarFixed 		<- try(VCAobj$VarFixed * scale^2, 	 silent=TRUE)
	if(!is.null(VCAobj$VarCov))
		VCAobj$VarCov			<- try(VCAobj$VarCov * scale^4, 	 silent=TRUE)
	
	if(is(obj, "VCAinference"))
	{
		obj$VCAobj <- VCAobj
		
		# variance components
		
		obj$ConfInt$VC$OneSided$LCL <- obj$ConfInt$VC$OneSided$LCL * scale^2
		obj$ConfInt$VC$OneSided$UCL <- obj$ConfInt$VC$OneSided$UCL * scale^2
		
		obj$ConfInt$VC$TwoSided$LCL <- obj$ConfInt$VC$TwoSided$LCL * scale^2
		obj$ConfInt$VC$TwoSided$UCL <- obj$ConfInt$VC$TwoSided$UCL * scale^2
		
		# SD
		
		obj$ConfInt$SD$OneSided$LCL <- obj$ConfInt$SD$OneSided$LCL * scale
		obj$ConfInt$SD$OneSided$UCL <- obj$ConfInt$SD$OneSided$UCL * scale
		
		obj$ConfInt$SD$TwoSided$LCL <- obj$ConfInt$SD$TwoSided$LCL * scale
		obj$ConfInt$SD$TwoSided$UCL <- obj$ConfInt$SD$TwoSided$UCL * scale
	}
	else
		obj <- VCAobj
	
	obj$rescaled <- TRUE			# record that re-scaling was performed
	obj 
}





#'Solve System of Linear Equations using Inverse of Cholesky-Root
#'
#'Function solves a system of linear equations, respectively, inverts a matrix
#'by means of the inverse Cholesky-root.
#'
#'This function is intended to reduce the computational time in function
#'\code{\link{solveMME}} which computes the inverse of the square variance-
#'covariance Matrix of observations. It is considerably faster than function
#'\code{\link{solve}} (see example).
#'Whenever an error occurs, which is the case for non positive definite matrices
#''X', function \code{\link{MPinv}} is called automatically yielding a generalized
#'inverse (Moore-Penrose inverse) of 'X'.
#'
#'@param X			(matrix, Matrix) object to be inverted
#'@param quiet		(logical) TRUE = will suppress any warning, which will be issued otherwise 
#'
#'@return (matrix, Matrix) corresponding to the inverse of X
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@examples
#'\dontrun{
#'# following complex (nonsense) model takes pretty long to fit
#'system.time(res.sw <- anovaVCA(y~(sample+lot+device)/day/run, VCAdata1))
#'# solve mixed model equations (not automatically done to be more efficient)
#'system.time(res.sw <- solveMME(res.sw))
#'# extract covariance matrix of observations V
#'V1 <- getMat(res.sw, "V")
#'V2 <- as.matrix(V1)
#'system.time(V2i <- solve(V2))
#'system.time(V1i <- VCA:::Solve(V1))
#'V1i <- as.matrix(V1i)
#'dimnames(V1i) <- NULL
#'dimnames(V2i) <- NULL
#'all.equal(V1i, V2i)
#'} 

Solve <- function(X, quiet=FALSE)
{
	stopifnot(ncol(X) == nrow(X))
	
	clsMatrix <- inherits(X, "Matrix")
	if(clsMatrix)
	{
		cls <- class(X)
		X <- as.matrix(X)
	}
	Xi <- try(chol2inv(chol(X)), silent=TRUE)
	
	if(inherits(Xi, "try-error"))			# use Moore-Penrose inverse instead in case of an error
	{										# using the Cholesky-decomposition approach
		if(!quiet)
			warning("\tMatrix inversion via 'chol2inv' failed!\n\tUse generalized (Moore-Penrose) inverse (MPinv)!", sep="\n")
		Xi <- MPinv(X)
	}
	
	if(clsMatrix)
	{
		Xi <- as(Xi, "dgCMatrix")			# Solve used here for inverting V-matrix
	}
	return(Xi)
}



#'Solve Mixed Model Equations
#'
#'Function solves the Mixed Model Equations (MME) to estimate fixed and random effects.
#'
#'This function is for internal use only, thus, not exported.
#'
#'@param obj			... (VCA) object
#'
#'@return 	(VCA) object, which has additional elements "RandomEffects" corresponding to the column vector 
#'of estimated random effects, "FixedEffects" being the column vector of estimated fixed effects. 
#'Element "Matrices" has additional elements referring to the elements of the MMEs and element
#'"VarFixed" corresponds to the variance-covariance matrix of fixed effects.
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@examples
#'\dontrun{
#'data(dataEP05A2_1)
#'fit <- anovaVCA(y~day/run, dataEP05A2_1, NegVC=TRUE)
#'fit <- solveMME(fit)
#'ranef(fit)
#'}

solveMME <- function(obj)
{
	stopifnot(class(obj) == "VCA")
	mats   	<- obj$Matrices
	V      	<- mats[["V"]]
	
	if(is.null(V))						# will be the case for ANOVA-type fitted models
	{
		obj  <- getV(obj)
		mats <- obj$Matrices
		V	 <- mats[["V"]]
	}
	Z      	<- mats$Zre
	R 	   	<- mats$R
	G      	<- mats$G
	X      	<- Matrix(mats$X)
	y      	<- mats$y
	
	if(is.null(mats$Vi))
		Vi  <- Solve(V, quiet=TRUE)
	else
		Vi	<- mats$Vi
	
	K 		<- Solve(t(X) %*% Vi %*% X, quiet=TRUE)		# variance-covariance matrix of fixed effects
	T	   	<- K %*% t(X) %*% Vi
	fixed  	<- T %*% y

	mats$Vi <- Vi
	mats$T  <- T
	rownames(fixed) <- colnames(X)
	colnames(fixed) <- "Estimate"
	re		<- obj$RandomEffects
	
	if(is.null(Z))
		re <- NULL
	else
	{
		if(is.null(re))
		{
			re  <- G %*% t(Z) %*% Vi %*% (y - X %*% fixed) 
			rownames(re) <- colnames(Z)
			colnames(re) <- "Estimate"
		}
	}
	obj$RandomEffects <- re
	obj$FixedEffects  <- fixed
	obj$Matrices	  <- mats
	obj$VarFixed      <- K
	return(obj)
}





#'Extract Fixed Effects from 'VCA' Object
#'
#'For conveniently using objects of class 'VCA' with other packages expecting this
#'function, e.g. the 'multcomp' package for general linear hypotheses for parametric
#'models (currently not fully implemented).
#'
#'@param object		(VCA) object where fixed effects shall be extracted
#'@param quiet			(logical) TRUE = will suppress any warning, which will be issued otherwise 
#'@param ...			additional parameters
#'
#'@method coef VCA 
#'
#'@examples 
#'\dontrun{
#'data(dataEP05A2_1)
#'fit1 <- anovaMM(y~day/(run), dataEP05A2_1)
#'coef(fit1)
#'fit2 <- anovaVCA(y~day/run, dataEP05A2_1)
#'coef(fit2)
#'}

coef.VCA <- function(object, quiet=FALSE, ...)
{
	Call <- match.call()
	obj <- object
	stopifnot(class(obj) == "VCA")
	fe  <- fixef(obj)
	if(is.null(fe))								# solve mixed model equations first
	{
		obj  <- solveMME(obj)
		fe   <- fixef(obj)
		nam  <- as.character(as.list(Call)$object)
		if(length(nam) == 1 && nam %in% names(as.list(.GlobalEnv)))
		{
			expr <- paste(nam, "<<- obj")		# update object missing MME results
			eval(parse(text=expr))
		}
		else
		{
			if(!quiet)
				message("Some required information missing! Usually solving mixed model equations has to be done as a prerequisite!")
		}
	}
	fe  <- fe[,"Estimate", drop=F]
	nam <- rownames(fe)
	fe  <- c(fe)
	names(fe) <- nam
	return(fe)
}


#'Calculate Variance-Covariance Matrix of Fixed Effects for an 'VCA' Object
#'
#'Return the variance-covariance matrix of fixed effects for a linear mixed model
#'applicable for objects of class 'VCA'.
#'
#'Actually this function only extracts this matrix or, if not available, calls function
#'\code{\link{vcovFixed}} which performs calculations. It exists for compatibility reasons,
#'i.e. for coneniently using objects of class 'VCA' with other packages expecting this
#'function, e.g. the 'multcomp' package for general linear hypotheses for parametric
#'models.  
#'
#'@param object		 	(VCA) object for which the variance-covariance matrix of
#'fixed effects shall be calculated
#'@param quiet				(logical) TRUE = will suppress any warning, which will be issued otherwise 
#'@param ...				additional parameters
#'
#'@return (matrix) corresponding to the variance-covariance matrix of fixed effects
#'
#'@method vcov VCA
#'
#'@examples 
#'\dontrun{
#'data(dataEP05A2_1)
#'fit1 <- anovaMM(y~day/(run), dataEP05A2_1)
#'vcov(fit1)
#'
#'fit2 <- anovaVCA(y~day/run, dataEP05A2_1)
#'vcov(fit2)
#'}

vcov.VCA <- function(object, quiet=FALSE, ...)
{
	obj <- object
	stopifnot(class(obj) == "VCA")
	if(!obj$intercept && length(obj$fixed) == 0)
	{
		if(!quiet)
			warning("There is no variance-convariance matrix of fixed effects for this object!")
		return(NA)
	}
	if(is.null(obj$VarFixed))
		return(vcovFixed(obj, quiet=quiet))
	else
		return(obj$VarFixed)
}


#'Degrees of Freedom for Testing Linear Contrasts of Fixed Effects and Least Square Means
#'
#'There are three methods implemented, which are all available in SAS PROC MIXED, namely 
#'"contain", "residual", and "satterthwaite" approximations. See the documentation of SAS
#'PROC MIXED for details on this topic.
#'
#'The implementation of the Satterthwaite approximation was inspired by the code of function 
#''calcSatterth' of R-package 'lmerTest'.
#'
#'@param obj			(VCA) object
#'@param L				(numeric) vector specifying the linear combination of the fixed effect or
#'						LS Means
#'@param ddfm			(character) string specifying the method used for computing the denominator
#'						degrees of freedom for tests of fixed effects or LS Means. Available methods are
#'						"contain", "residual", and "satterthwaite".
#'@param tol			(numeric) value specifying the numeric tolerance for testing equality to zero
#'@param method.grad	(character) string specifying the method to be used for approximating the gradient
#'						of the variance-covariance matrix of fixed effects at the estimated covariance parameter
#'						estimates (see function 'grad' (numDeriv) for details)
#'@param opt			(logical) TRUE = tries to optimize computation time by avoiding unnecessary computations
#'						for balanced datasets (see \code{\link{test.fixef}}). 
#'@param items			(list) of pre-computed values
#'
#'@return (numeric) vector with the specified type of degrees of freedom
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@seealso \code{\link{test.fixef}}

getDDFM <- function(obj, L, ddfm=c("contain", "residual", "satterthwaite"), tol=1e-12, method.grad="simple", opt=TRUE, items=NULL)
{
	stopifnot(class(obj) == "VCA")
	stopifnot(!is.null(colnames(L)))
	ddfm <- match.arg(ddfm)
	
	if(ddfm == "residual")
	{
		return(obj$Nobs - rankMatrix(getMat(obj, "X")))			# as described in documentation of SAS PROC MIXED
	}
	else if(ddfm == "contain")
	{		
		cn <- colnames(L)										# fe or LS Means names
		cn <- cn[which(L[1,] != 0)]

		if(length(cn) == 1 && cn == "int")						# handle intercept fixed effect
		{
			return(min(obj$aov.org[obj$random, "DF"]))
		}
		fe <- obj$fixed

		tmp <- sapply(fe, function(x) gregexpr(x, cn))			# can names of fixed terms be found in column names of L?

		if(is(tmp, "list")) {								# there was only a single non-zero column in L --> list returned
			fe <- sapply(tmp, function(x) x != -1)
		} else {												# mulitple non-zero columns in L
			fe <- apply(tmp, 2, function(y) any(y==1))
		}		

		if(any(fe))
		{
			fe <- fe[which(fe)]
			fe <- names(fe)
			rn <- obj$random
			rn <- sapply(rn, function(x) all(sapply(fe, grepl, x)))

			if(any(rn))
			{
				DF <- min(obj$aov.org[names(rn), "DF"])
				return(DF)
			}
			else
			{
				tmpZ <-  getMat(obj, "Z")
				
				if(!is.null(tmpZ))
					return(obj$Nobs - rankMatrix(cbind(as.matrix(getMat(obj, "X")), as.matrix(tmpZ))))
				else
					return(obj$Nobs - rankMatrix(as.matrix(getMat(obj, "X"))))
			}
		}
		else
		{
			return(obj$Nobs - rankMatrix(cbind(as.matrix(getMat(obj, "X")), as.matrix(getMat(obj, "Z")))))	# no random term including the fixed effects term --> residual DFs
		}
	}
	else if(ddfm == "satterthwaite")
	{
		stopifnot(class(obj) == "VCA")		
		if(is.null(dim(L)))
			L <- matrix(L, nrow=1)		
		
		if(obj$balanced == "balanced" && opt && obj$EstMethod != "REML" && FALSE)
		{
			return(obj$aov.tab[2,"DF"])			
		}
		r       <- items$r
		SVD 	<- items$SVD
		nu.m 	<- NULL											# see SAS-help for SAS PROC MIXED -> model /ddfm=sat
		A <- obj$VarCov											# same names as in SAS Help of PROC MIXED, Model statement, option "ddfm=sat"
		if(is.null(A))
			A <- vcovVC(obj)
		
		VCs <- obj$aov.tab[-1, "VC"]							# all variance components but total
		
		for( m in 1:length(SVD$values) )
		{   
			g <- grad(function(x)  L %*% DfSattHelper(obj, x) %*% t(L),  VCs, method = method.grad)
			nu.m <- c(nu.m, 2 * (SVD$values[m])^2/(t(g) %*% A %*% g))
		}
		
		E  <- sum( (nu.m/(nu.m-2)) * as.numeric(nu.m>2))
		DF <- 2*E*as.numeric(E>r)/(E-r)
		
		return(DF)
	}
}






#'Calculate Variance-Covariance Matrix of Variance Components of 'VCA' objects
#'
#'This function computes the variance-covariance matrix of variance components (VC) either
#'applying the approach given in the \eqn{1^{st}}{1st} reference ('method="scm"') or using
#'the approximation given in the \eqn{2^{nd}}{2nd} reference ('method="gb"').
#'
#'
#'This function is called on a 'VCA' object, which can be the sole argument. In this case the value
#'assigned to element 'VarVC.method' of the 'VCA' object will be used.
#'
#'@param obj			(VCA) object
#'@param method		(character) string, optionally specifying whether to use the algorithm given in the
#'1st reference ("scm") or in the 2nd refernce ("gb"). If not not supplied, the 
#'option is used coming with the 'VCA' object.
#'@param quiet			(logical) TRUE = will suppress any warning, which will be issued otherwise 
#'
#'@return (matrix) corresponding to variance-covariance matrix of variance components
#'
#'@author 	Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com},
#'Florian Dufey \email{florian.dufey@@roche.com}
#'
#'@references
#'Searle, S.R, Casella, G., McCulloch, C.E. (1992), Variance Components, Wiley New York
#'
#'Giesbrecht, F.G. and Burns, J.C. (1985), Two-Stage Analysis Based on a Mixed Model: Large-Sample
#'Asymptotic Theory and Small-Sample Simulation Results, Biometrics 41, p. 477-486
#'
#'@examples
#'\dontrun{
#'data(realData)
#'dat1 <- realData[realData$PID==1,]
#'fit  <- anovaVCA(y~lot/calibration/day/run, dat1) 
#'vcovVC(fit)
#'vcovVC(fit, "scm")		# Searle-Casella-McCulloch method (1st reference)
#'vcovVC(fit, "gb")		# Giesbrecht and Burns method (2nd reference)
#'}

vcovVC <- function(obj, method=NULL, quiet=FALSE)
{
	Call <- match.call()
	
	stopifnot(class(obj) == "VCA")
	if(!is.null(method))
		method <- match.arg(method, c("scm", "gb"))
	else
		method <- obj$VarVC.method
	
	VCvar <- obj$VarCov
	
	if(obj$EstMethod == "REML")
	{
		if(is.null(VCvar))
		{
#			if(!quiet)
#				warning("When fitting a model via REML, set 'VarVC=TRUE' for computing the variance-covariance matrix of variance components!")
#			return(NULL)
			return(getGB(obj))
		}
		if(method == "scm" && !quiet)
			warning("For models fitted by REML only the Giesbrecht & Burns method is applicable!")
	}
	
	if(!is.null(VCvar))
		return(VCvar)
	
	Z  <- obj$Matrices$Z
	
	if(method == "scm")								
	{
        VCvar <-obj$Matrices$VCvar
        rownames(VCvar) <- colnames(VCvar) <- obj$VCnames
	}
	else
	{
		if(is.null(obj$VarFixed))
		{
			obj  <- solveMME(obj)
			nam  <- as.character(as.list(Call)$obj)
			if(length(nam) == 1 && nam %in% names(as.list(.GlobalEnv)))
			{
				expr <- paste(nam, "<<- obj")		# update object missing MME results
				eval(parse(text=expr))
			}
			else
			{
				if(quiet)
					message("Some required information missing! Usually solving mixed model equations has to be done as a prerequisite!")
			}
		}		
		VCvar <- getGB(obj)							# apply Giesbrecht & Burns approximation
	}
	attr(VCvar, "method") <- method					# which method was used
	
	return(VCvar)
}


#'Standard Printing Method for Objects of Class 'VCA'
#'
#'Function prints 'VCA' objects as returned e.g. by function \code{\link{anovaVCA}}.
#'
#'@param x         (VCA) object of class 'VCA' as returned by function 'anovaVCA'.
#'@param digits    (integer) number of digits numeric values are rounded to before printing.
#'@param ...       additional arguments to be passed to or from methods.
#'
#'@method print VCA

print.VCA <- function(x, digits=6L, ...)
{
	EstMeth <- x$EstMethod
	Mean <- x$Mean
	Nobs <- x$Nobs
	Nrm  <- x$Nrm
	balanced <- x$balanced
	NegVCmsg <- ifelse(is.null(x$NegVCmsg), "", x$NegVCmsg)
	
	if(x$Type == "Linear Model")
	{
		if(!"skipHeading" %in% names(list(...)))
			cat("\n\nAnalysis of Variance Table:\n---------------------------\n\n")
		tmp <- x$aov.org
		tmp$DF <- round(tmp$DF)
		printCoefmat(tmp, digits=digits, dig.tst=digits, has.Pvalue=TRUE, P.values=5, 
				na.print="", zap.ind=3, tst.ind=4, cs.ind=NULL)
		cat("\n")
		
	}
	else
	{
		if(x$EstMethod == "ANOVA")
		{
			MM <- x$Type == "Mixed Model" 
			if(!"skipHeading" %in% names(list(...)) && !MM)
				cat("\n\nResult Variance Component Analysis:\n-----------------------------------\n\n")
			if(!"skipHeading" %in% names(list(...))&& MM)
			{
				cat("\n\nANOVA-Type Estimation of Mixed Model:\n--------------------------------------\n\n")
			}
			if(MM)
			{
				fe <- fixef(x)[,"Estimate", drop=FALSE]
				nam <- rownames(fe)
				fe <- c(fe)
				names(fe) <- nam
			}
			rn <- rownames(x$aov.tab)
			cn <- colnames(x$aov.tab)
			
			#		if(!MM)
			NegVCind <- which(x$VCoriginal < 0) + 1                    	# "VCoriginal" does not contain total variance --> +1
			mat <- matrix(x$aov.tab, nrow=length(rn), dimnames=list(rn, cn))
			mat <- apply(mat, 1:2, round, digits=digits)
			mat <- cbind(Name=rn, mat)
			if("CV" %in% colnames(mat))
				colnames(mat)[which(colnames(mat) == "CV")] <- "CV[%]"
			rownames(mat) <- 1:nrow(mat)
			if(NegVCmsg != "")
			{
				mat[NegVCind, c("VC", "%Total", "SD", "CV[%]")] <- paste(mat[NegVCind, "VC"], "*", sep="")
			}
			mat <- apply(mat, 1:2, function(x) ifelse(x==NaN, NA, x))
			if(MM)
			{
				cat("\t[Fixed Effects]\n\n")
				print(round(fe, digits))
				cat("\n\n\t[Variance Components]\n\n")
			}
			print(mat, na.print="", quote=FALSE, digits=digits)
		}
		else
		{
			MM <- x$Type == "Mixed Model" 
			if(!"skipHeading" %in% names(list(...)) && !MM)
				cat("\n\nResult Variance Component Analysis:\n-----------------------------------\n\n")
			if(!"skipHeading" %in% names(list(...))&& MM)
			{
				cat("\n\nREML-Estimation of Mixed Model:\n-------------------------------\n\n")
			}
			if(MM)
			{
				fe <- fixef(x)[,"Estimate", drop=FALSE]
				nam <- rownames(fe)
				fe <- c(fe)
				names(fe) <- nam
			}
			rn <- rownames(x$aov.tab)
			cn <- colnames(x$aov.tab)
			mat <- as.matrix(x$aov.tab)
			mat <- apply(mat, 1:2, round, digits=digits)
			mat <- cbind(Name=rn, mat)
			rownames(mat) <- 1:nrow(mat)
			
			if(MM)
			{
				cat("\t[Fixed Effects]\n\n")
				print(round(fe, digits))
				cat("\n\n\t[Variance Components]\n\n")
			}
			
			print(mat, na.print="", quote=FALSE, digits=digits)
		}
	}
	
	cat("\nMean:", round(Mean, digits), 
			paste("(N = ",Nobs, ifelse(is.null(Nrm), "", paste(", ", Nrm, " observations removed due to missing data", sep="")), ")", sep=""), 
			"\n\nExperimental Design:", balanced," |  Method:", x$EstMethod)
	
	if(NegVCmsg != "" && x$Type != "Linear Model")                # there were VCs set to zero
		cat(" |", NegVCmsg, "| adapted MS used for total DF")
	cat("\n\n")
}


#'Inferential Statistics for VCA-Results
#'
#'Function \code{VCAinference} constructs one- and two-sided confidence intervals, and performs Chi-Squared tests for total
#'and error variance against claimed values for 'VCA' objects.
#'
#'This function computes confidence intervals (CI) for variance components (VC), standard deviations (SD)
#'and coefficients of variation (CV). VCs 'total' and 'error' can be tested against claimed values specifying parameters
#''total.claim' and 'error.claim'. One can also specify claim-values in terms of SD or CV (see \code{claim.type}).\cr
#'Confidence intervals for VCs are constructed either following the same rules as in SAS 9.2 PROC MIXED with option 'method=type1'
#'(ci.method="sas") or using Satterthwaite methodology throughout (ci.method="satterthwaite"). In the former approach
#'for VC total and error, which are constrained to be \eqn{>= 0}, CIs are based on the Chi-Squared distribution. Degrees of freedom
#'(DF) for total variance are approximated using the Satterthwaite approximation (which is not available in either SAS procedure).
#'For all other VCs, the CI is \eqn{[sigma^2-QNorm(alpha/2)*SE(sigma^2); sigma^2+QNorm(1-alpha/2)*SE(sigma^2)]}, where QNorm(x) indicates the x-quantile of 
#'the standard normal distribution. The second method approximates DFs for all VCs using the Satterthwaite approximation and CIs are
#'based on the corresponding Chi-Squared distribution for all VCs (see examples). 
#'Note that in the computation of the covariance-matrix of the VCs, the estimated VCs will be used. If these are requested to be set to 0 
#'(\code{NegVC=FALSE} in \code{\link{anovaVCA}}), the result might not be conformable with theory given in the first reference. 
#'The validity of this implementation was checked against SAS 9.2 PROC MIXED (method=type1), where VCs are not constrained to be >= 0. 
#'The sampling variances for VCs are obtained assuming normality throughout based on \eqn{Var(\sigma^{2} = C^{-1} * Var(m_{SS} * (C^{-1})^{T}))}{Var(sigma^2) = Ci * Var(SS) * Ci'}, 
#'where \eqn{C^{-1}}{Ci} is the inverse of the coefficient matrix equating observed Sum of Squares (SS)
#'to their expected values, and \eqn{(C^{-1})^{T}}{Ci'} indicating the transpose of \eqn{C^{-1}}{Ci} (see Searle et al. 1992, pg. 176).
#'
#'An input \code{VCA}-object can be in one of three states:\cr 
#'\cr
#'State (1) corresponds to the situation, where all VC > 0.\cr 
#'State (2) corresponds to the situation, where at least one VC < 0.\cr
#'State (3) corresponds to situations, where negative VC estimates occured but were set to 0, i.e. \code{NegVC=FALSE} - the Default.\cr
#'
#'State (2) occurs when parameter \code{NegVC} was set to TRUE in \code{\link{anovaVCA}}, state (3) represents the default-setting in 
#'function \code{\link{anovaVCA}}. If a \code{VCA}-object is in state (1), parameter \code{excludeNeg} has no effect (there are no negative VCs),
#'only parameter \code{constrainCI} is evaluated. For \code{VCA}-objects in state(2), \code{constrainCI} has no effect, because constraining
#'CIs for unconstrained VCs makes no sense. State (3) forces parameter \code{constrainCI} to be set to TRUE and one can only choose whether to
#'exclude CIs of negative VC estimates or not. Whenever VCs have to be constrained, it is straight forward to apply constraining also to any
#'CI. Note that situations outlined above only occur when parameter \code{VarVC} is set to TRUE, which causes estimation of the covariance-matrix
#'of variance components. The default is only to compute and report CIs for total and error variance, which cannot become negative.
#'
#'
#'@param obj				(object) of class 'VCA' or, alternatively, a list of 'VCA' objects, where all other arguments can be 
#'							specified as vectors, where the i-th vector element applies to the i-th element of 'obj' (see examples) 
#'@param alpha				(numeric) value specifying the significance level for \eqn{100*(1-alpha)}\% confidence intervals.
#'@param total.claim		(numeric) value specifying the claim-value for the Chi-Squared test for the total variance (SD or CV, see \code{claim.type}).
#'@param error.claim		(numeric) value specifying the claim-value for the Chi-Squared test for the error variance (SD or CV, see \code{claim.type}).
#'@param claim.type			(character) one of "VC", "SD", "CV" specifying how claim-values have to be interpreted:\cr
#'							"VC" (Default) = claim-value(s) specified in terms of variance(s),\cr
#'							"SD" = claim-values specified in terms of standard deviations (SD),\cr
#'							"CV" = claim-values specified in terms of coefficient(s) of variation (CV)
#'							and are specified as percentages.\cr
#'							If set to "SD" or "CV", claim-values will be converted to variances before applying the Chi-Squared test (see examples).
#'@param VarVC				(logical) TRUE = the covariance matrix of the estimated VCs will be computed (see \code{\link{vcovVC}}), where diagonal
#' 							elements correspond to the variances of the individual VCs. This matrix is required for estimation of CIs for 
#'							intermediate VCs if 'method.ci="sas"'. 
#'							FALSE (Default) = computing covariance matrix of VCs is omitted, as well as CIs for intermediate VCs.
#'@param excludeNeg			(logical) TRUE = confidence intervals of negative variance estimates will not be reported. \cr
#'							FALSE = confidence intervals for all VCs will be reported including those with negative VCs.\cr
#'							See the details section for a thorough explanation.
#'@param constrainCI		(logical) TRUE = CI-limits for all variance components are constrained to be >= 0.\cr
#'							FALSE = unconstrained CIs with potentially negative CI-limits will be reported.\cr
#'							which will preserve the original width of CIs.
#'							See the details section for a thorough explanation.
#'@param ci.method			(character) string or abbreviation specifying which approach to use for computing confidence intervals of variance components (VC).
#'							"sas" (default) uses Chi-Squared based CIs for total and error and normal approximation for all other VCs (Wald-limits, option "NOBOUND"
#'							in SAS PROC MIXED); "satterthwaite" will approximate DFs for each VC using the Satterthwaite approach (see \code{\link{SattDF}} for models
#'							fitted by ANOVA) and all Cis are based on the Chi-Squared distribution. This approach is conservative but avoids negative values for the lower bounds. 
#'@param quiet				(logical) TRUE = will suppress any warning, which will be issued otherwise 
#'@note						Original CIs will always be available independent of parameter-settings of \code{excludeNeg} and
#'							\code{constrainCI}. Original CIs are stored in attribute "CIoriginal" of the returned 'VCAinference'-object, e.g.
#'							'attr(obj$ConfInt$SD$OneSided, "CIoriginal")' or 'attr(obj$ConfInt$CV$TwoSided, "CIoriginal")'.
#'
#'@return  (VCAinference) object, a list with elements: \cr
#'\item{ChiSqTest}{(data.frame) with results of the Chi-Squared test}
#'\item{ConfInt}{(list) with elements \code{VC}, \code{SD}, \code{CV}, all lists themselves containing (data.frame) objects \code{OneSided} and \code{TwoSided}}
#'\item{VCAobj}{(VCA) object specified as input, if \code{VarVC=TRUE}, the 'aov.tab' element will have an extra column "Var(VC)" storing variances of VC-estimates"}
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@references 
#'
#'Searle, S.R, Casella, G., McCulloch, C.E. (1992), Variance Components., Wiley New York
#'
#'Burdick, R., Graybill, F. (1992), Confidence Intervals on Variance Components. Marcel Dekker, Inc.
#'
#'Satterthwaite, F.E. (1946), An Approximate Distribution of Estimates of Variance Components., 
#'Biometrics Bulletin 2, 110-114
#'
#'@seealso \code{\link{print.VCAinference}}, \code{\link{anovaVCA}}
#'
#'@examples 
#'\dontrun{
#'
#'# load data (CLSI EP05-A2 Within-Lab Precision Experiment) 
#'data(dataEP05A2_1)
#'
#'# perform (V)variance (C)component (A)nalysis (also compute A-matrices)
#'res <- anovaVCA(y~day/run, dataEP05A2_1)
#'
#'# get confidence intervals for total and error (VC, SD, CV)
#'VCAinference(res)
#'
#'# additionally request CIs for all other VCs; default is to constrain 
#'# CI-limits to be >= 0
#'# first solve MME
#'res <- solveMME(res)
#'VCAinference(res, VarVC=TRUE)
#'
#'# now using Satterthwaite methodology for CIs
#'VCAinference(res, VarVC=TRUE, ci.method="satt")
#'
#'# request unconstrained CIs
#'VCAinference(res, VarVC=TRUE, constrainCI=FALSE)
#'
#'# additionally request Chi-Squared Tests of total and error, default 
#'# is that claim values are specified as variances (claim.type="VC")
#'VCAinference(res, total.claim=4.5, error.claim=3.5)
#'
#'# perform Chi-Squared Tests, where claim-values are given as SD, 
#'# compare p-values to former example
#'VCAinference(res, total.claim=sqrt(4.5), error.claim=sqrt(3.5), claim.type="SD")
#'
#'# now using Satterthwaite methodology for CIs
#'VCAinference(res, total.claim=sqrt(4.5), error.claim=sqrt(3.5), 
#'claim.type="SD", ci.method="satt")
#'
#'# now add random error to example data forcing the ANOVA-estimate of the 
#'# day-variance to be negative
#'set.seed(121)
#'tmpData <- dataEP05A2_1
#'tmpData$y <- tmpData$y + rnorm(80,,3)
#'res2 <- anovaVCA(y~day/run, tmpData)
#'
#'# call 'VCAinference' with default settings
#'VCAinference(res2)
#'
#'# extract components of the returned 'VCAinference' object
#'inf <- VCAinference(res2, total.claim=12)
#'inf$ConfInt$VC$OneSided			# one-sided CIs for variance components
#'inf$ConfInt$VC$TwoSided			# two-sided CI for variance components
#'inf$ChiSqTest
#'
#'# request CIs for all VCs, default is to exclude CIs of negative VCs (excludeNeg=TRUE) 
#'# solve MMEs first (or set MME=TRUE when calling anovaVCA)
#'res2 <- solveMME(res2)
#'VCAinference(res2, VarVC=TRUE)
#'
#'# request CIs for all VCs, including those for negative VCs, note that all CI-limits 
#'# are constrained to be >= 0
#'VCAinference(res2, VarVC=TRUE, excludeNeg=FALSE)
#'
#'# request unconstrained CIs for all VCs, including those for negative VCS
#'# one has to re-fit the model allowing the VCs to be negative
#'res3 <- anovaVCA(y~day/run, tmpData, NegVC=TRUE, MME=TRUE)
#'VCAinference(res3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE)
#'
#'### use the numerical example from the CLSI EP05-A2 guideline (p.25)
#'data(Glucose,package="VCA")
#'res.ex <- anovaVCA(result~day/run, Glucose)
#'
#'### also perform Chi-Squared tests
#'### Note: in guideline claimed SD-values are used, here, claimed variances are used
#'VCAinference(res.ex, total.claim=3.4^2, error.claim=2.5^2)
#'
#'
#'# load another example dataset and extract the "sample_1" subset
#'data(VCAdata1)
#'sample1 <- VCAdata1[which(VCAdata1$sample==1),]
#'
#'# generate an additional factor variable and random errors according to its levels
#'sample1$device <- gl(3,28,252)                                      
#'set.seed(505)
#'sample1$y <- sample1$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3)     
#'
#'# fit a crossed-nested design with main factors 'lot' and 'device' 
#'# and nested factors 'day' and 'run' nested below, also request A-matrices 
#'res1 <- anovaVCA(y~(lot+device)/day/run, sample1) 
#'
#'# get confidence intervals, covariance-matrix of VCs, ..., 
#'# explicitly request the covariance-matrix of variance components
#'# solve MMEs first
#'res1 <- solveMME(res1)
#'inf1 <- VCAinference(res1, VarVC=TRUE, constrainCI=FALSE)
#'inf1
#'
#'# print numerical values with more digits
#'print(inf1, digit=12)
#'
#'# print only parts of the 'VCAinference' object (see \code{\link{print.VCAinference}})
#'print(inf1, digit=12, what=c("VCA", "VC"))
#'
#'# extract complete covariance matrix of variance components 
#'# (main diagonal is part of standard output -> "Var(VC"))
#'VarCovVC <- vcovVC(inf1$VCAobj)
#'round(VarCovVC, 12)
#'
#'# use by-processing and specific argument-values for each level of the by-variable
#'data(VCAdata1)
#'fit.all <- anovaVCA(y~(device+lot)/day/run, VCAdata1, by="sample", NegVC=TRUE)
#'inf.all <- VCAinference(fit.all, total.claim=c(.1,.75,.8,1,.5,.5,2.5,20,.1,1))
#'print.VCAinference(inf.all, what="VC")
#'}

VCAinference <- function(obj, alpha=.05, total.claim=NA, error.claim=NA, claim.type="VC", 
		VarVC=FALSE, excludeNeg=TRUE, constrainCI=TRUE, ci.method="sas",
		quiet=FALSE)
{
	Call <- match.call()
	
	if(is.list(obj) && !is(obj, "VCA"))
	{
		if(!all(sapply(obj, class) == "VCA"))
			stop("Only lists of 'VCA' object are accepted!")
		
		obj.len <- length(obj)
		
		if(!"msgEnv" %in% ls(.GlobalEnv))
			msgEnv <<- new.env(parent=emptyenv())
		
		assign("VCAinference.obj.is.list", TRUE, envir=msgEnv)			# indicate that a list-type object was passed intially
		
		res <- mapply(	FUN=VCAinference, obj=obj, alpha=alpha, 
				total.claim=total.claim, error.claim=error.claim,
				claim.type=claim.type, VarVC=VarVC, excludeNeg=excludeNeg,
				constrainCI=constrainCI, ci.method=ci.method, 
				SIMPLIFY=FALSE)
		names(res) <- names(obj)
		
		if(obj.len == 1)			# mapply returns a list of length 2 in case that length(obj) was equal to 1
			res <- res[1]
		
		rm("VCAinference.obj.is.list", envir=msgEnv)
		
		return(res)
	}	
	
	stopifnot(class(obj) == "VCA")
	ci.method <- match.arg(ci.method, c("sas", "satterthwaite"))
	
	MM <- obj$Type == "Mixed Model"					# only exists for mixed models
	if(MM)
		VCs   <- obj$Matrices$VCall
	else
		VCs <- obj$aov.tab[-1,"VC"]		 			# for random models directly from ANOVA-table
	
	claim.type <- match.arg(claim.type, c("VC", "SD", "CV"))
	
	Mean <- obj$Mean
	Nvc  <- nrow(obj)
	EstMethod <- obj$EstMethod
	
	if( all(obj$aov.tab[,"VC"] > 0) )
		VCstate <- 1                               
	else if( any(obj$aov.tab[,"VC"] < 0) )
		VCstate <- 2
	else
	{
		if(obj$NegVCmsg != "")
			VCstate <- 3                            # negative VCs set to zero                               
		else                                                                
			VCstate <- 1                            # zero-VC estimated as such                                      
	}
	
	# add column with DF and Var(VC) in case of REML estimation
	if(obj$EstMethod == "REML" && !"DF"%in%colnames(obj$aov.tab)) {
		VCvar 		<- obj$VarCov <- getGB(obj)				# apply Giesbrecht & Burns approximation optimized for MKL
		varVC 		<- diag(VCvar)
		varVC 		<- c(sum(VCvar), varVC)					# variance of total is sum of all elements of the variance-covariance matrix
		seVC  		<- sqrt(varVC)
		Wald  		<- obj$aov.tab[,"VC"]/seVC				# Wald-statistic
		DF	  		<- 2*Wald^2
		obj$aov.tab <- cbind(DF=DF, obj$aov.tab)
		obj$aov.tab <- cbind(obj$aov.tab, "Var(VC)"=c(sum(VCvar), diag(VCvar))) 
	}
	
	if( !is.null(obj$Matrices) && VarVC && obj$EstMethod == "ANOVA")
	{
		if(is.null(obj$VarCov))						# solve mixed model equations first
		{
			VCvar 			<- vcovVC(obj, method=obj$VarVC.method) 	# get variance-covariance matrix of VCs (p.176); do not pass total VC
			NegVCmsg    	<- obj$NegVCmsg
			VCoriginal  	<- obj$VCoriginal
			Nobs        	<- obj$Nobs
			Nrm         	<- obj$Nrm
			balanced    	<- obj$balanced
			class(obj) 		<- "VCA"
			obj$NegVCmsg   	<- NegVCmsg
			obj$VCoriginal 	<- VCoriginal
			obj$VarCov     	<- VCvar                                    # store variance-covariance matrix of variance components
			obj$Mean       	<- Mean
			obj$Nobs       	<- Nobs
			obj$Nrm        	<- Nrm
			obj$balanced   	<- balanced
			
			nam0 <- deparse(Call$obj)
			nam1 <- sub("\\[.*", "", nam0)
			
			if(length(nam1) == 1 && nam1 %in% names(as.list(.GlobalEnv)))		# obj is not function call
			{
				expr <- paste(nam0, "<<- obj")						# update object missing MME results
				eval(parse(text=expr))	
			}
			else	# warning only if not called on list of VCA-objects
			{
				if( !"VCAinference.obj.is.list" %in% names(as.list(msgEnv)) && !quiet )
					message("Mixed model equations solved locally. Results could not be assigned to object!")
			}
		} else {
			VCvar <- obj$VarCov
		}	
		obj$aov.tab <- cbind(obj$aov.tab, "Var(VC)"=c(sum(VCvar), diag(VCvar))) 
	}
	
	if(!is.na(total.claim) && nrow(obj$aov.tab) == 1)                               # if error is the only VC no total variance exists (or is equal)
		total.claim <- NA
	
	if(nrow(obj$aov.tab) == 1)
		Nvc <- 1
	else
		Cind <- which(rownames(obj$aov.tab) %in% c("total", "error"))
	
	if(!is.na(total.claim))
	{
		if(is.numeric(total.claim))
		{
			if( (is.na(total.claim) || total.claim <= 0 ) && !quiet)
				warning("Parameter 'total.claim' is not correctly specified! Chi-Squared test for total precision is omitted!")
		}
		else
		{
			if(!quiet)
				warning("Parameter 'total.claim' is not correctly specified! Chi-Squared test for total precision is omitted!")
		}
	}
	if(!is.na(error.claim))
	{
		if(is.numeric(error.claim))
		{
			if( (is.na(error.claim) || error.claim <= 0) && !quiet)
				warning("Parameter 'error.claim' is not correctly specified! Chi-Squared test for error precision (repeatability) is omitted!")
		}
		else
		{
			if(!quiet)
				warning("Parameter 'error.claim' is not correctly specified! Chi-Squared test for error precision (repeatability) is omitted!")
		}
	}
	
	nam <- rownames(obj$aov.tab)
	Nvc <- length(nam)                                  # number of variance components including total variance
	
	# Chi-Squared tests
	
	CStest <- data.frame(Name=nam, "Claim"=rep(NA,Nvc))
	CStest$"ChiSq value" <- rep(NA, Nvc)
	CStest$"Pr (>ChiSq)" <- rep(NA, Nvc)
	
	if(!is.na(total.claim))
	{
		if(claim.type == "SD")
			total.claim <- total.claim^2                # now the Chi-Squared Test for variances can be used
		
		if(claim.type =="CV")
			total.claim <- (total.claim * Mean/100)^2   # re-caluculate variance from CV
		
		CStest$"Claim"[1] <- total.claim
		
		CStest$"ChiSq value"[1] <- obj$aov.tab[1, "VC"]*obj$aov.tab[1, "DF"]/total.claim 
		
		CStest$"Pr (>ChiSq)"[1] <- pchisq(q=CStest$"ChiSq value"[1], df=obj$aov.tab[1, "DF"], lower.tail=TRUE)
		
		if(claim.type == "SD")
			CStest$"Claim"[1] <- sqrt(total.claim)
		
		if(claim.type == "CV")
			CStest$"Claim"[1] <- sqrt(total.claim)*100/Mean
	}
	
	if(!is.na(error.claim))
	{
		if(claim.type == "SD")
			error.claim <- error.claim^2                # now the Chi-Squared Test for variances can be used
		
		if(claim.type =="CV")
			error.claim <- (error.claim * Mean/100)^2   # re-caluculate variance from CV
		
		CStest$"Claim"[Nvc]       <- error.claim
		CStest$"ChiSq value"[Nvc] <- obj$aov.tab[Nvc, "VC"]*obj$aov.tab[Nvc, "DF"]/error.claim 
		CStest$"Pr (>ChiSq)"[Nvc] <- pchisq(q=CStest$"ChiSq value"[Nvc], df=obj$aov.tab[Nvc, "DF"], lower.tail=TRUE)
		
		if(claim.type == "SD")
			CStest$"Claim"[Nvc] <- sqrt(error.claim)
		
		if(claim.type == "CV")
			CStest$"Claim"[Nvc] <- sqrt(error.claim)*100/Mean
	}
	
	rownames(CStest) <- CStest$Name
	
	# CIs on VCs, SDs and CVs
	
	indCS <- which( rownames(obj$aov.tab) %in% c("total", "error"))				# Chi-Squred dist VCs
	indN  <- which(!rownames(obj$aov.tab) %in% c("total", "error"))				# Normal dist VCs
	
	#####################
	### two-sided CIs ###
	
	CI_VC <- data.frame(Name=nam)
	CI_VC$LCL <- numeric(nrow(obj$aov.tab))
	CI_VC$UCL <- numeric(nrow(obj$aov.tab))
	
	# Chi-Squared CIs
	
	lower.qchisq <- qchisq(p=1-alpha/2, df=obj$aov.tab[indCS, "DF"])
	upper.qchisq <- qchisq(p=alpha/2, df=obj$aov.tab[indCS, "DF"])
	CI_VC$LCL[indCS] <- obj$aov.tab[indCS, "VC"]*obj$aov.tab[indCS, "DF"]/lower.qchisq
	CI_VC$UCL[indCS] <- obj$aov.tab[indCS, "VC"]*obj$aov.tab[indCS, "DF"]/upper.qchisq
	
	# CIs based on Normal-Distribution (ci.method="sas") or Chi-Squared (ci.method="satterthwaite")
	
	if(ci.method == "sas" && "Var(VC)" %in% colnames(obj$aov.tab))		# variance-covariance matrix of VCs required
	{
		CI_VC$LCL[indN] <- obj$aov.tab[indN, "VC"]+qnorm(alpha/2)*sqrt(obj$aov.tab[indN, "Var(VC)"])
		CI_VC$UCL[indN] <- obj$aov.tab[indN, "VC"]+qnorm(1-alpha/2)*sqrt(obj$aov.tab[indN, "Var(VC)"])
		DFs <- NULL
	}
	else if(ci.method == "satterthwaite")
	{
		if(obj$EstMethod == "ANOVA")
		{
			rind	<- obj$Matrices$rf.ind						# indices of random terms in the original ANOVA-table
			aov.tab <- if(obj$Type == "Random Model")			# original ANOVA table
						obj$aov.tab[-1,]						# remove row for total 
					else	
						obj$aov.org
			MS  	<- aov.tab[rind, "MS"]
			Ci  	<- getMat(obj, "Ci.MS")[rind, rind]
			DF  	<- aov.tab[rind, "DF"]
			sDF 	<- SattDF(MS, Ci, DF, type="individual") 	# satterthwaite DFs
			ind 	<- 1:(length(sDF)-1)						# without row for error 
			DFs 	<- c(obj$aov.tab[1,"DF"], sDF)				# total DF
		}
		else													# fitted by REML, only Satterthwaite DF exist
		{
			DFs <- obj$aov.tab[,"DF"]
			sDF <- DFs[-1]
			ind <- 1:(length(sDF)-1)
		}
		
		CI_VC$DF <- DFs										# add Satterthwaite DFs
		CI_VC <- CI_VC[,c(1,4,2,3)]
		lower.qchisq <- qchisq(p=1-alpha/2, df=sDF[ind])
		upper.qchisq <- qchisq(p=alpha/2, df=sDF[ind])
		CI_VC$LCL[ind+1] <- obj$aov.tab[ind+1, "VC"]*sDF[ind]/lower.qchisq		# lower limit all but total and error
		CI_VC$UCL[ind+1] <- obj$aov.tab[ind+1, "VC"]*sDF[ind]/upper.qchisq		# upper limit  - " -
	}
	else
	{
		CI_VC$LCL[indN] <- NA
		CI_VC$UCL[indN] <- NA
		DFs <- NULL
	}
	
	rownames(CI_VC) <- CI_VC$Name
	attr(CI_VC, "CIoriginal") <- CI_VC                      # keep original CI limits as attribute
	
	if(VCstate == 1)                                        # excludeNeg not evaluated, since all VCs positive
	{
		if( constrainCI && any(CI_VC$LCL < 0, na.rm=TRUE))  # any negative CI-limits?
		{
			LCLind <- which(CI_VC$LCL < 0)
			UCLind <- which(CI_VC$UCL < 0)                  # keep info about constrained LCLs
			
			attr(CI_VC, "LCLconstrained") <- LCLind
			
			CI_VC$LCL[LCLind] <- 0                          # set negative LCL to 0
			
			if(length(UCLind) > 0)                          # set negative UCL to 0 
			{
				CI_VC$UCL[UCLind] <- 0
				attr(CI_VC, "UCLconstrained") <- UCLind     # keep info about constrained UCLs
			}
		}
	}
	if(VCstate == 2)                                        # constrainCI not evaluated since negative VCs explicitly allowed
	{
		if( excludeNeg )                                    # CIs for negative VC are excluded
		{    
			NegInd <- which(obj$aov.tab[,"VC"] < 0)
			CI_VC$LCL[NegInd] <- NA                         # there has to be at least one LCL < 0
			CI_VC$UCL[NegInd] <- NA
		}
	}
	if(VCstate == 3)
	{
		if( excludeNeg )
		{
			NegInd <- which(obj$VCoriginal < 0)+1  			# which VCs were set to 0, i.e. were originally < 0
			CI_VC$LCL[NegInd] <- NA                         # there has to be at least one LCL < 0
			CI_VC$UCL[NegInd] <- NA
		}
		
		if(any(CI_VC$LCL < 0, na.rm=TRUE))                  # constrainCI implicitly set to 0, since negative VCs set to zero automatically results in constraining CIs
		{
			LCLind <- which(CI_VC$LCL < 0)
			UCLind <- which(CI_VC$UCL < 0)                  # keep info about constrained LCLs
			
			attr(CI_VC, "LCLconstrained") <- LCLind
			
			CI_VC$LCL[LCLind] <- 0                          # set negative LCL to 0
			
			if(length(UCLind) > 0)                          # set negative UCL to 0 
			{
				CI_VC$UCL[UCLind] <- 0
				attr(CI_VC, "UCLconstrained") <- UCLind     # keep info about constrained UCLs
			}
		}
	}
	
	# test whether point-estimates within CI or not
	CIwarning <- FALSE
	CIout <- NULL
	CIind <- which(obj$aov.tab[,"VC"] < CI_VC$LCL | obj$aov.tab[,"VC"] > CI_VC$UCL)
	
	if(length(CIind) > 0)
	{
		CI_VC$LCL[CIind] <- CI_VC$UCL[CIind] <- NA									# set them NA
		CIwarning <- TRUE
		CIout <- c(CIout, rownames(obj$aov.tab)[CIind])
	}
	
	
	# SD and CV computed from VC      NOTE: sqrt o.k.??????????
	
	CI_SD <- data.frame(Name=nam)
	CI_SD$DF <- DFs							# add Satterthwaite DFs if available
	Sign <- sign(CI_VC$LCL)
	CI_SD$LCL <- sqrt(abs(CI_VC$LCL))*Sign
	Sign <- sign(CI_VC$UCL)
	CI_SD$UCL <- sqrt(abs(CI_VC$UCL))*Sign
	rownames(CI_SD) <- CI_SD$Name
	
	if(any(is.na(obj$aov.tab[,"SD"])))
		CI_SD[which(is.na(obj$aov.tab[,"SD"])),2:ncol(CI_SD)] <- NA 
	
	CI_CV <- data.frame(Name=nam)
	CI_CV$DF <- DFs							# add Satterthwaite DFs if available
	CI_CV$LCL <- CI_SD$LCL * 100/Mean
	CI_CV$UCL <- CI_SD$UCL * 100/Mean
	rownames(CI_CV) <- CI_CV$Name
	
	CI_two_sided <- list(CI_VC=CI_VC, CI_SD=CI_SD, CI_CV=CI_CV)
	
	# one-sided CIs
	
	CI_VC <- data.frame(Name=nam)
	CI_VC$DF <- DFs							# add Satterthwaite DFs if available
	CI_VC$LCL <- numeric(nrow(obj$aov.tab))
	CI_VC$UCL <- numeric(nrow(obj$aov.tab))
	
	# CIs based on Chi-Squared
	
	upper.qchisq <- qchisq(p=alpha,   df=obj$aov.tab[indCS, "DF"])
	lower.qchisq <- qchisq(p=1-alpha, df=obj$aov.tab[indCS, "DF"])
	CI_VC$LCL[indCS] <- obj$aov.tab[indCS, "VC"]*obj$aov.tab[indCS, "DF"]/lower.qchisq
	CI_VC$UCL[indCS] <- obj$aov.tab[indCS, "VC"]*obj$aov.tab[indCS, "DF"]/upper.qchisq
	rownames(CI_VC) <- CI_VC$Name
	
	# CIs based on Normal Distribution or Chi-Squared 
	
	if(ci.method == "sas" && "Var(VC)" %in% colnames(obj$aov.tab))	
	{
		CI_VC$UCL[indN] <- obj$aov.tab[indN, "VC"]+qnorm(1-alpha)*sqrt(obj$aov.tab[indN, "Var(VC)"])
		CI_VC$LCL[indN] <- obj$aov.tab[indN, "VC"]+qnorm(  alpha)*sqrt(obj$aov.tab[indN, "Var(VC)"])
	}
	else if(ci.method == "satterthwaite")
	{
		lower.qchisq <- qchisq(p=1-alpha, df=sDF[ind])
		upper.qchisq <- qchisq(p=alpha, df=sDF[ind])
		CI_VC$LCL[ind+1] <- obj$aov.tab[ind+1, "VC"]*sDF[ind]/lower.qchisq
		CI_VC$UCL[ind+1] <- obj$aov.tab[ind+1, "VC"]*sDF[ind]/upper.qchisq
	}
	else
	{
		CI_VC$UCL[indN] <- NA
		CI_VC$LCL[indN] <- NA
	}
	
	attr(CI_VC, "CIoriginal") <- CI_VC                      # keep original CI limits as attribute
	
	if(VCstate == 1)                                        # excludeNeg not evaluated, since all VCs positive
	{
		if( constrainCI && any(CI_VC$LCL < 0, na.rm=TRUE))  # any negative CI-limits?
		{
			LCLind <- which(CI_VC$LCL < 0)
			UCLind <- which(CI_VC$UCL < 0)                  # keep info about constrained LCLs
			CI_VC$LCL[LCLind] <- 0 
			attr(CI_VC, "LCLconstrained") <- LCLind
			
			if(length(UCLind) > 0)                          # set negative UCL to 0 
			{
				CI_VC$UCL[UCLind] <- 0
				attr(CI_VC, "UCLconstrained") <- UCLind     # keep info about constrained UCLs
			}
		}
	}
	if(VCstate == 2)                                        # constrainCI not evaluated since negative VCs explicitly allowed
	{
		if( excludeNeg )                                    # CIs for negative VC are excluded
		{    
			NegInd <- which(obj$aov.tab[,"VC"] < 0)
			
			CI_VC$UCL[NegInd] <- NA                         # there has to be at least one UCL < 0
			CI_VC$LCL[NegInd] <- NA                         # there has to be at least one UCL < 0
		}
	}
	if(VCstate == 3)
	{
		
		if( excludeNeg )
		{
			NegInd <- which(obj$VCoriginal < 0) + 1  		# which VCs were set to 0, i.e. were originally < 0
			CI_VC$UCL[NegInd] <- NA                         # there has to be at least one UCL < 0
			CI_VC$LCL[NegInd] <- NA
		}
		
		if(any(CI_VC$LCL < 0, na.rm=TRUE))
		{
			LCLind <- which(CI_VC$LCL < 0)              # keep info about constrained LCLs
			CI_VC$LCL[LCLind] <- 0                      # set negative LCL to 0
			attr(CI_VC, "LCLconstrained") <- LCLind
		}
		
#            if(any(CI_VC$UCL < 0, na.rm=TRUE))
#            {
#                UCLind <- which(CI_VC$UCL < 0)              # keep info about constrained UCLs
#                
#                attr(CI_VC, "UCLconstrained") <- UCLind
#                
#                CI_VC$UCL[UCLind] <- 0                      # set negative UCL to 0
#            }
		
	}
	
	# test whether point-estimates within CI or not
	CIindLCL <- which(obj$aov.tab[,"VC"] < CI_VC$LCL)
	CIindUCL <- which(obj$aov.tab[,"VC"] > CI_VC$UCL)
	
	if(length(CIindLCL) > 0)
	{
		CI_VC$LCL[CIindLCL] <- NA								# set LCL to NA
		CIwarning <- TRUE
		CIout <- c(CIout, rownames(obj$aov.tab)[CIindLCL])
	}
	if(length(CIindUCL) > 0)
	{
		CI_VC$UCL[CIindUCL] <- NA										# set LCL to NA
		CIwarning <- TRUE
		CIout <- c(CIout, rownames(obj$aov.tab)[CIindUCL])
	}
	
	if(CIwarning && !quiet)
	{	
		warning("Point estimate(s) of VC(s) ", paste(paste("'", unique(CIout), "'", sep=""), sep=", ")," found outside of confidence interval, CI was set to 'NA'!")
	}
	# SD and CV computed from VC
	
	CI_SD 			<- data.frame(Name=nam)
	CI_SD$DF 		<- DFs											# add Satterthwaite DFs if available
	SignLCL  		<- sign(CI_VC$LCL)
	CI_SD$LCL 		<- sqrt(abs(CI_VC$LCL)) * SignLCL
	SignUCL  		<- sign(CI_VC$UCL)
	CI_SD$UCL 		<- sqrt(abs(CI_VC$UCL)) * SignUCL
	rownames(CI_SD) <- CI_SD$Name
	
	if(any(is.na(obj$aov.tab[,"SD"])))
		CI_SD[which(is.na(obj$aov.tab[,"SD"])),2:ncol(CI_SD)] <- NA 
	
	CI_CV 			<- data.frame(Name=nam)
	CI_CV$DF 		<- DFs											# add Satterthwaite DFs if available
	CI_CV$LCL 		<- CI_SD$LCL * 100/Mean
	CI_CV$UCL 		<- CI_SD$UCL * 100/Mean
	rownames(CI_CV) <- CI_CV$Name
	
	CI_one_sided <- list(CI_VC=CI_VC, CI_SD=CI_SD, CI_CV=CI_CV)
	
	CIs <- list(VC=list(OneSided=CI_one_sided$CI_VC, TwoSided=CI_two_sided$CI_VC),
				SD=list(OneSided=CI_one_sided$CI_SD, TwoSided=CI_two_sided$CI_SD),
				CV=list(OneSided=CI_one_sided$CI_CV, TwoSided=CI_two_sided$CI_CV))
	
	result <- list(ChiSqTest=CStest, ConfInt=CIs, VCAobj=obj, alpha=alpha)
	class(result) <- "VCAinference"
	attr(result, "EstMethod")   <- EstMethod
	attr(result, "excludeNeg")  <- excludeNeg
	attr(result, "constrainCI") <- constrainCI
	attr(result, "claim.type")  <- claim.type
	attr(result, "ci.method")   <- ci.method
	return(result)
}


#'Standard Print Method for Objects of Class 'VCAinference'
#'
#'Prints the list-type 'VCAinference'-object as tabulated output. 
#'
#'Formats the list-type objects of class 'VCAinference' for a more comprehensive
#'presentation of results, which are easier to grasp. The default is to show the complete
#'object (VCA ANOVA-table, VC-, SD-, and CV-CIs). Using parameter 'what' allows to
#'restrict the printed output to certain parts. Print-function invisibly returns a matrix
#'or a list of matrices, depending on the values of 'what', i.e. it can be used as for
#'packing the inference-information in one or multiple matrix-objects and extracting it/them.
#'
#'@param x         (VCAinference) object 
#'@param digits    (integer) number of decimal digits.
#'@param what      (character) one of "all", "VC", "SD", "CV", "VCA" specifying which part of the 'VCA'-object is to be printed.
#'@param ...       additional arguments to be passed to or from methods.
#'
#'@return invisibly returns sub-elements of 'x' specified via 'what'
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@method print VCAinference
#'
#'@seealso \code{\link{VCAinference}}, \code{\link{anovaVCA}}
#'
#'@examples
#'\dontrun{
#'# load data (CLSI EP05-A2 Within-Lab Precision Experiment) 
#'data(dataEP05A2_1)
#'
#'# perform ANOVA-estimation of variance components for a nested design
#'res <- anovaVCA(y~day/run, Data=dataEP05A2_1)
#'res
#'inf <- VCAinference(res)
#'inf
#'
#'# show certain parts and extract them invisibly
#'CVmat <- print(inf, what="CV")
#'CVmat
#'
#'# show numerical values with more digits
#'print(inf, digit=12)
#'}

print.VCAinference <- function(x, digits=4L, what=c("all", "VC", "SD", "CV", "VCA"), ...)
{
	if(is.list(x) && !is(x, "VCAinference"))
	{
		if(!all(sapply(x, class) == "VCAinference"))
			stop("Only lists of 'VCAinference' objects can printed!")
		
		nam <- names(x)
		lst <- list()
		
		for(i in 1:length(x))
		{
			print(nam[i])
			lst[[i]] <- print(x[[i]], digits=digits, what=what)
		}
		return()			# leave function now
	}
	
	stopifnot(class(x) == "VCAinference") 
	claim.type <- attr(x, "claim.type")
	VCAobj <- x$VCAobj
	
	ret <- list()
	
	what <- match.arg(tolower(what), tolower(c("all", "VC", "SD", "CV", "VCA")), several.ok=TRUE)
	
#	MM <- !is.null(attr(x$VCAobj, "FixedEffects"))
	
	if(VCAobj$Type == "Mixed Model")
		cat("\n\n\nInference from Mixed Model Fit\n------------------------------\n\n")
	else if(VCAobj$Type == "Linear Model")
		cat("\n\n\nInference from Linear Model Fit:\n--------------------------------\n\n")
	else
		cat("\n\n\nInference from (V)ariance (C)omponent (A)nalysis\n------------------------------------------------\n\n")
	
	if( any( c("all", "vca") %in% what) )
	{
		if(VCAobj$Type == "Linear Model")
			cat("> ANOVA Table:\n--------------\n\n")
		else
			cat("> VCA Result:\n-------------\n\n")
		print(VCAobj, digits=digits, skipHeading=TRUE)
		cat("\n")
	}    
	
	if( any( c("all", "vc") %in% what) )
	{
		cat("> VC:\n-----\n")
		VC <- as.data.frame(as.matrix(VCAobj$aov.tab)[,"VC", drop=FALSE])
		colnames(VC) <- "Estimate"
		
		if(any(!is.na(x$ChiSqTest[,"Claim"])) && claim.type == "VC")
		{
			VC$Claim <- as.numeric(rep(NA, nrow(VC)))
			VC$"ChiSq" <- as.numeric(rep(NA, nrow(VC)))
			VC$"Pr(>ChiSq)" <- as.numeric(rep(NA, nrow(VC)))
			VC[as.character(x$ChiSqTest[,"Name"]), c("Claim", "ChiSq", "Pr(>ChiSq)")] <- x$ChiSqTest[,-1]
		}
		
		VC$DF <- x$ConfInt$VC$TwoSided$DF
		
		VC$"CI LCL" <-  as.numeric(rep(NA, nrow(VC)))
		VC$"CI UCL" <-  as.numeric(rep(NA, nrow(VC)))
		
		VC[as.character(x$ConfInt$VC$TwoSided[,"Name"]), c("CI LCL", "CI UCL")] <- x$ConfInt$VC$TwoSided[,c("LCL", "UCL")]
		
		VC$"One-Sided LCL" <-  as.numeric(rep(NA, nrow(VC)))
		VC$"One-Sided UCL" <-  as.numeric(rep(NA, nrow(VC)))
		
		VC[as.character(x$ConfInt$VC$OneSided[,"Name"]), c("One-Sided LCL", "One-Sided UCL")] <-x$ConfInt$VC$OneSided[,c("LCL", "UCL")]
		
		VC <- as.matrix(VC)
		VC <- apply(VC, 1:2, round, digits)   
		
		if(!is.null(attr(x$ConfInt$VC$TwoSided, "LCLconstrained")))
			VC[attr(x$ConfInt$VC$TwoSided, "LCLconstrained"), "CI LCL"] <- paste(VC[attr(x$ConfInt$VC$TwoSided, "LCLconstrained"), "CI LCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$TwoSided, "UCLconstrained")))
			VC[attr(x$ConfInt$VC$TwoSided, "UCLconstrained"), "CI UCL"] <- paste(VC[attr(x$ConfInt$VC$TwoSided, "UCLconstrained"), "CI UCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$OneSided, "LCLconstrained")))
			VC[attr(x$ConfInt$VC$OneSided, "LCLconstrained"), "One-Sided LCL"] <- paste(VC[attr(x$ConfInt$VC$OneSided, "LCLconstrained"), "One-Sided LCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$OneSided, "UCLconstrained")))
			VC[attr(x$ConfInt$VC$OneSided, "UCLconstrained"), "One-Sided UCL"] <- paste(VC[attr(x$ConfInt$VC$OneSided, "UCLconstrained"), "One-Sided UCL"], "*", sep="")
		
		print(noquote(VC), na.print="")
		ret$VC <- VC
	}
	
	if( any( c("all", "sd") %in% what) )
	{
		cat("\n> SD:\n-----\n")
		SD <- as.data.frame(as.matrix(VCAobj$aov.tab[,"SD", drop=FALSE]))
		colnames(SD) <- "Estimate"
		
		if(any(!is.na(x$ChiSqTest[,"Claim"])) && claim.type == "SD")
		{
			SD$Claim <- as.numeric(rep(NA, nrow(SD)))
			SD$"ChiSq" <- as.numeric(rep(NA, nrow(SD)))
			SD$"Pr(>ChiSq)" <- as.numeric(rep(NA, nrow(SD)))
			SD[as.character(x$ChiSqTest[,"Name"]), c("Claim", "ChiSq", "Pr(>ChiSq)")] <- x$ChiSqTest[,-1]
		}
		
		SD$DF <- x$ConfInt$SD$TwoSided$DF
		
		SD$"CI LCL" <-  as.numeric(rep(NA, nrow(SD)))
		SD$"CI UCL" <-  as.numeric(rep(NA, nrow(SD)))
		
		SD[as.character(x$ConfInt$SD$TwoSided[,"Name"]), c("CI LCL", "CI UCL")] <-x$ConfInt$SD$TwoSided[,c("LCL", "UCL")]
		
		SD$"One-Sided LCL" <-  as.numeric(rep(NA, nrow(SD)))
		SD$"One-Sided UCL" <-  as.numeric(rep(NA, nrow(SD)))
		
		SD[as.character(x$ConfInt$SD$OneSided[,"Name"]), c("One-Sided LCL", "One-Sided UCL")] <-x$ConfInt$SD$OneSided[,c("LCL", "UCL")]
		
		SD <- as.matrix(SD)
		SD <- apply(SD, 1:2, round, digits)  
		
		if(!is.null(attr(x$ConfInt$VC$TwoSided, "LCLconstrained")))                 # Note: attribute "LCLconstrained" exists only for VC since SD and CV computed from VC
			SD[attr(x$ConfInt$VC$TwoSided, "LCLconstrained"), "CI LCL"] <- paste(SD[attr(x$ConfInt$VC$TwoSided, "LCLconstrained"), "CI LCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$TwoSided, "UCLconstrained")))                 # see above
			SD[attr(x$ConfInt$VC$TwoSided, "UCLconstrained"), "CI UCL"] <- paste(SD[attr(x$ConfInt$VC$TwoSided, "UCLconstrained"), "CI UCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$OneSided, "LCLconstrained")))                 # see above
			SD[attr(x$ConfInt$VC$OneSided, "LCLconstrained"), "One-Sided LCL"] <- paste(SD[attr(x$ConfInt$VC$OneSided, "LCLconstrained"), "One-Sided LCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$OneSided, "UCLconstrained")))                 # see above
			SD[attr(x$ConfInt$VC$OneSided, "UCLconstrained"), "One-Sided UCL"] <- paste(SD[attr(x$ConfInt$VC$OneSided, "UCLconstrained"), "One-Sided UCL"], "*", sep="")
		
		print(noquote(SD), na.print="")
		
		ret$SD <- SD
	}
	
	if( any( c("all", "cv") %in% what) )
	{
		cat("\n> CV[%]:\n--------\n")
		CV <- as.data.frame(as.matrix(VCAobj$aov.tab)[,"CV[%]", drop=FALSE])
		colnames(CV) <- "Estimate"
		
		if(any(!is.na(x$ChiSqTest[,"Claim"])) && claim.type == "CV")
		{
			CV$Claim <- as.numeric(rep(NA, nrow(CV)))
			CV$"ChiSq" <- as.numeric(rep(NA, nrow(CV)))
			CV$"Pr(>ChiSq)" <- as.numeric(rep(NA, nrow(CV)))
			CV[as.character(x$ChiSqTest[,"Name"]), c("Claim", "ChiSq", "Pr(>ChiSq)")] <- x$ChiSqTest[,-1]
		}
		
		CV$DF <- x$ConfInt$CV$TwoSided$DF
		
		CV$"CI LCL" <-  as.numeric(rep(NA, nrow(CV)))
		CV$"CI UCL" <-  as.numeric(rep(NA, nrow(CV)))
		
		CV[as.character(x$ConfInt$CV$TwoSided[,"Name"]), c("CI LCL", "CI UCL")] <-x$ConfInt$CV$TwoSided[,c("LCL", "UCL")]
		
		CV$"One-Sided LCL" <-  as.numeric(rep(NA, nrow(CV)))
		CV$"One-Sided UCL" <-  as.numeric(rep(NA, nrow(CV)))
		
		CV[as.character(x$ConfInt$CV$OneSided[,"Name"]), c("One-Sided LCL","One-Sided UCL")] <-x$ConfInt$CV$OneSided[,c("LCL", "UCL")]
		
		CV <- as.matrix(CV)
		CV <- apply(CV, 1:2, round, digits)   
		
		if(!is.null(attr(x$ConfInt$VC$TwoSided, "LCLconstrained")))                 # Note: attribute "LCLconstrained" exists only for VC since SD and CV computed from VC
			CV[attr(x$ConfInt$VC$TwoSided, "LCLconstrained"), "CI LCL"] <- paste(CV[attr(x$ConfInt$VC$TwoSided, "LCLconstrained"), "CI LCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$TwoSided, "UCLconstrained")))                 # see above
			CV[attr(x$ConfInt$VC$TwoSided, "UCLconstrained"), "CI UCL"] <- paste(CV[attr(x$ConfInt$VC$TwoSided, "UCLconstrained"), "CI UCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$OneSided, "LCLconstrained")))                 # see above
			CV[attr(x$ConfInt$VC$OneSided, "LCLconstrained"), "One-Sided LCL"] <- paste(CV[attr(x$ConfInt$VC$OneSided, "LCLconstrained"), "One-Sided LCL"], "*", sep="")
		
		if(!is.null(attr(x$ConfInt$VC$OneSided, "UCLconstrained")))                 # see above
			CV[attr(x$ConfInt$VC$OneSided, "UCLconstrained"), "One-Sided UCL"] <- paste(CV[attr(x$ConfInt$VC$OneSided, "UCLconstrained"), "One-Sided UCL"], "*", sep="")
		
		print(noquote(CV), na.print="")
		
		ret$CV <- CV
	}
	
	ci.method <- attr(x, "ci.method")
	
	if( any(c("all", "vc", "sd", "cv") %in% what) )
		cat( paste("\n\n", 100*(1-x$alpha), "% Confidence Level  ", ifelse(attr(x, "excludeNeg") && any(VCAobj$aov.tab[,"VC"] <= 0), "|  CIs for negative VCs excluded  ", ""),
						ifelse(!is.null(attr(x$ConfInt$VC$TwoSided, "LCLconstrained")), "| * CI-limits constrained to be >= 0", ""), 
						ifelse(ci.method=="sas", "\nSAS PROC MIXED method used for computing CIs", "\nSatterthwaite methodology used for computing CIs"), sep=""), "\n\n")
	
	if(length(ret) > 1)                     # extracting parts of the 'VCAinference' object
		invisible(ret)
	else if(length(ret) == 1)
		invisible(ret[[1]])
	
}


#'Extract Residuals of a 'VCA' Object
#'
#'Function extracts marginal or conditional residuals from a 'VCA' object, 
#'representing a linear mixed model.
#'
#'There are two types of residuals which can be extraced from a 'VCA' object.
#'Marginal residuals correspond to \eqn{e_m = y - \hat{y}}{e_m = y - y_hat}, where \eqn{\hat{y} = Xb}{y_hat = Xb} with \eqn{X}
#'being the design matrix of fixed effects and \eqn{b} being the column vector of fixed
#'effects parameter estimates. Conditional residuals are defined as \eqn{e_c = y - Xb - Zg},
#'where \eqn{Z} corresponds to the designs matrix of random effects \eqn{g}. 
#'Whenever 'obj' is a pure-error model, e.g. 'y~1' both options will return the same values 
#'\eqn{y - Xb} and \eqn{b} corresponds to the intercept.
#'Each type of residuals can be standardized, studentized, or transformed to pearson-type residuals. 
#'The former corresponds to a transformation of residuals to have mean 0 and variance equal to 1 (\eqn{(r - \bar{r})/\sigma_{r}}{[r - mean(r)]/sd(r)]}). 
#'Studentized residuals emerge from dividing raw residuals by the square-root of diagonal elements of the corresponding 
#'variance-covariance matrix. For conditional residuals, this is \eqn{Var(c) = P = RQR}, with \eqn{Q = V^{-1}(I - H)}{Q = V"(I - H)},
#'\eqn{H = XT} being the hat-matrix, and \eqn{T = (X^{T}V^{-1}X)^{-1}X^{T}V^{-1}}{T = (X'V"X)"X'V"}. For marginal residuals, this matrix
#'is \eqn{Var(m) = O = V - Q}. Here, >\eqn{^{T}}{'}< denotes the matrix transpose operator, 
#'and >\eqn{^{-1}}{"}< the regular matrix inverse. Pearson-type residuals are computed in the same manner as studentized, only
#'the variance-covariance matrices differ. For marginal residuals this is equal to \eqn{Var(y) = V}, for conditional residuals
#'this is \eqn{Var(c) = R} (see \code{\link{getV}} for details). 
#'
#'@param object		(VCA) object
#'@param type			(character) string specifying the type of residuals to be returned,
#'valid options are "marginal" and "conditional" or abbreviations
#'@param mode			(character) string or abbreviation specifying the specific transformation
#'applied to a certain type of residuals. There are "raw" (untransformed), 
#'"standardized", "studentized" and "pearson" (see details) residuals.
#'@param quiet			(logical) TRUE = will suppress any warning, which will be issued otherwise 
#'@param ...			additional parameters
#'
#'@author Andre Schuetzenmeister \email{andre.schuetzenmeister@@roche.com}
#'
#'@method residuals VCA
#'
#'@references 
#'
#'Hilden-Minton, J. A. (1995). Multilevel diagnostics for mixed and hierarchical linear
#'models. Dissertation, University of California, Los Angeles.
#'
#'Nobre, J. S. & Singer, J. M. (2007). Residual analysis for linear mixed models. Biometrical
#'Journal, 49, 863-875.
#'
#'Schuetzenmeister, A. and Piepho, H.P. (2012). Residual analysis of linear mixed models using a simulation approach.
#'Computational Statistics and Data Analysis, 56, 1405-1416
#'
#'@examples
#'\dontrun{
#'data(VCAdata1)
#'datS1 <- VCAdata1[VCAdata1$sample==1,]
#'fit1  <- anovaVCA(y~(lot+device)/(day)/(run), datS1) 
#'
#'# default is conditional (raw) residuals
#'resid(fit1)
#'resid(fit1, "m")
#'
#'# get standardized version
#'resid(fit1, mode="stand")		# conditional residuals (default)
#'resid(fit1, "marg", "stand")		# marginal residuals
#'
#'# get studentized version, taking their 
#'# covariances into account
#'resid(fit1, mode="stud")		# conditional residuals (default)
#'resid(fit1, "marg", "stud")		# marginal residuals
#'}
#'
#'@aliases resid
#'
#'@seealso \code{\link{ranef}}, \code{\link{anovaVCA}}, \code{\link{anovaMM}}

residuals.VCA <- function(object, type=c("conditional", "marginal"), mode=c("raw", "student", "standard", "pearson"), quiet=FALSE, ...)
{		
	Call <- match.call()
	obj <- object
	
	if(is.list(obj) && !is(obj, "VCA"))
	{
		if(!all(sapply(obj, class) == "VCA"))
			stop("Only lists of 'VCA' object are accepted!")
		
		obj.len <- length(obj)
		
		if(!"msgEnv" %in% ls(.GlobalEnv))
			msgEnv <<- new.env(parent=emptyenv())
		
		assign("VCAinference.obj.is.list", TRUE, envir=msgEnv)			# indicate that a list-type object was passed intially
		
		res <- mapply(	FUN=residuals.VCA, object=obj,
				type=type[1], mode=mode[1], SIMPLIFY=FALSE)
		
		names(res) <- names(obj)
		
		if(obj.len == 1)			# mapply returns a list of length 2 in case that length(obj) was equal to 1
			res <- res[1]
		
		rm("VCAinference.obj.is.list", envir=msgEnv)
		
		return(res)
	}	
	
	stopifnot(class(obj) == "VCA")
	
	type <- match.arg(type)
	mode <- match.arg(mode)
	
	if(!is.null(obj$scale) && is.null(obj$rescaled))
		warning("The fitted model has not been re-scaled yet! Results are likely to differ from correct results!")
	
	if(is.null(obj$FixedEffects))
	{
		obj  <- solveMME(obj)
		nam0 <- deparse(Call$object)
		nam1 <- sub("\\[.*", "", nam0)
		
		if(length(nam1) == 1 && nam1 %in% names(as.list(.GlobalEnv)))
		{
			expr <- paste(nam0, "<<- obj")		# update object missing MME results
			eval(parse(text=expr))
		}
		else
		{
			if( !"VCAinference.obj.is.list" %in% names(as.list(msgEnv)) && !quiet)
				message("Some required information missing! Usually solving mixed model equations has to be done as a prerequisite!")
		}
	}
	
	Xb <- getMat(obj, "X") %*% obj$FixedEffects
	y  <- getMat(obj, "y")
	
	if(as.character(obj$terms)[3] == "1")							# pure error model
	{
		type <- "marginal"
	}
	
	if(!is.null(obj$scale) && mode != "raw")
		scale <- obj$scale
	else
		scale <- 1
	
	if(type == "marginal")											# marginal residuals
	{
		res <- y - Xb
		V   <- getMat(obj, "V")
		
		if(mode == "student")
		{			
			X  <- getMat(obj, "X")
			Vi <- getMat(obj, "Vi")
			
			#Q  <- X %*% MPinv(t(X) %*% Vi %*% X) %*% t(X)
			K   <- obj$VarFixed	/ scale^2																
			Q   <- X %*% K %*% t(X)
			res <- res/sqrt(diag(V-Q))								# apply studentization
		}
		else if(mode == "pearson")
		{
			res <- res/sqrt(diag(V))								# Pearson-type residuals
		}
	}
	else															# conditional residuals
	{
		Z   <- getMat(obj, "Z")
		if(obj$EstMethod == "REML")									# re-order Z to align with random effects
			Z <- Z[,unlist(obj$ColOrderZ)]
		
		Zg  <- Z %*% ranef(obj)										# order according to column-order of Z
		
		res <- y - Xb - Zg
		
		R  	<- getMat(obj, "R")
		
		if(mode == "student")
		{
			mats <- obj$Matrices
			
			Q	 <- mats$Q
			
			if(is.null(Q))
			{
				X  <- mats$X
				T  <- mats$T
				Vi <- mats$Vi
				mats$H <- H  <- X %*% T
				mats$Q <- Q  <- Vi %*% (diag(nrow(H))-H)
				
				nam0 <- deparse(Call$object)	
				nam1 <- sub("\\[.*", "", nam0) 
				
				if(length(nam1) == 1 && nam1 %in% names(as.list(.GlobalEnv)))	# write back to object in the calling env
				{
					obj$Matrices <- mats
					expr <- paste(nam0, "<<- obj")
					eval(parse(text=expr))
				}
			}
			P 	 <- R %*% Q %*% R
			res	 <- res / sqrt(diag(P))								# apply studentization
		}
		else if(mode == "pearson")
		{
			res <- res/sqrt(diag(R))								# Pearson-type residuals
		}
	}
	res <- c(res[,1])											
	
	if(mode=="standard")
	{
		res <- res / sd(res)										# apply standardization
	}
	names(res) <- rownames(obj$data)		
	attr(res, "type") <- type
	attr(res, "mode") <- mode
	res <- res/scale
	return(res)
}

Try the VCA package in your browser

Any scripts or data that you put into this service are public.

VCA documentation built on May 29, 2024, 1:48 a.m.