BiCopCDF | R Documentation |
This function evaluates the cumulative distribution function (CDF) of a given parametric bivariate copula.
BiCopCDF(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
u1 , u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
numeric; single number or vector of size |
obj |
|
check.pars |
logical; default is |
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopCDF(u1, u2, obj)
can be used.
A numeric vector of the bivariate copula distribution function
of the copula family
with parameter(s) par
, par2
evaluated at u1
and u2
.
The calculation of the cumulative distribution function (CDF) of the
Student's t copula (family = 2
) is only approximate. For numerical
reasons, the degree of freedom parameter (par2
) is rounded to an
integer before calculation of the CDF.
Eike Brechmann
BiCopPDF()
,
BiCopHfunc()
,
BiCopSim()
,
BiCop()
## simulate from a bivariate Clayton copula
set.seed(123)
cop <- BiCop(family = 3, par = 3.4)
simdata <- BiCopSim(300, cop)
## evaluate the distribution function of the bivariate Clayton copula
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopCDF(u1, u2, cop)
## select a bivariate copula for the simulated data
cop <- BiCopSelect(u1, u2)
summary(cop)
## and evaluate its CDF
BiCopCDF(u1, u2, cop)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.